Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Plants ; 10(6): 1039-1051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816498

ABSTRACT

Cotton (Gossypium hirsutum L.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars ('UGA230', 'UA48' and 'CSX8308') and updating the 'TM-1' cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from 'Pima' cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.


Subject(s)
Genome, Plant , Gossypium , Plant Breeding , Gossypium/genetics , Gossypium/growth & development , Plant Breeding/methods , Cotton Fiber , Genetic Variation , Phenotype
2.
Mol Ecol ; 33(11): e17357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683054

ABSTRACT

We present a framework for identifying when conditions are favourable for transmission of vector-borne diseases between communities by incorporating predicted disease prevalence mapping with landscape analysis of sociological, environmental and host/parasite genetic data. We explored the relationship between environmental features and gene flow of a filarial parasite of humans, Onchocerca volvulus, and its vector, blackflies in the genus Simulium. We generated a baseline microfilarial prevalence map from point estimates from 47 locations in the ecological transition separating the savannah and forest in Ghana, where transmission of O. volvulus persists despite onchocerciasis control efforts. We generated movement suitability maps based on environmental correlates with mitochondrial population structure of 164 parasites from 15 communities and 93 vectors from only four sampling sites, and compared these to the baseline prevalence map. Parasite genetic distance between sampling locations was significantly associated with elevation (r = .793, p = .005) and soil moisture (r = .507, p = .002), while vector genetic distance was associated with soil moisture (r = .788, p = .0417) and precipitation (r = .835, p = .0417). The correlation between baseline prevalence and parasite resistance surface maps was stronger than that between prevalence and vector resistance surface maps. The centre of the study area had high prevalence and suitability for parasite and vector gene flow, potentially contributing to persistent transmission and suggesting the importance of re-evaluating transmission zone boundaries. With suitably dense sampling, this framework can help delineate transmission zones for onchocerciasis and would be translatable to other vector-borne diseases.


Subject(s)
Gene Flow , Insect Vectors , Onchocerca volvulus , Onchocerciasis , Simuliidae , Animals , Onchocerciasis/transmission , Onchocerciasis/epidemiology , Insect Vectors/genetics , Insect Vectors/parasitology , Simuliidae/genetics , Simuliidae/parasitology , Humans , Ghana/epidemiology , Onchocerca volvulus/genetics , Prevalence , Genetics, Population , Environment
3.
Plant Methods ; 20(1): 46, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504327

ABSTRACT

BACKGROUND: Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resistance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also outputs a GHS. Here, we introduce HairNet2, a quantitative deep-learning model which detects leaf hairs (trichomes) from images and outputs a segmentation mask and a Leaf Trichome Score (LTS). RESULTS: Trichomes of 1250 images were annotated (AnnCoT) and a combination of six Feature Extractor modules and five Segmentation modules were tested alongside a range of loss functions and data augmentation techniques. HairNet2 was further validated on the dataset used to build HairNet (CotLeaf-1), a similar dataset collected in two subsequent seasons (CotLeaf-2), and a dataset collected on two genetically diverse populations (CotLeaf-X). The main findings of this study are that (1) leaf number, environment and image position did not significantly affect results, (2) although GHS and LTS mostly correlated for individual GHS classes, results at the genotype level revealed a strong LTS heterogeneity within a given GHS class, (3) LTS correlated strongly with expert scoring of individual images. CONCLUSIONS: HairNet2 is the first quantitative and scalable deep-learning model able to measure leaf hairiness. Results obtained with HairNet2 concur with the qualitative values used by breeders at both extremes of the scale (GHS 1-2, and 5-5+), but interestingly suggest a reordering of genotypes with intermediate values (GHS 3-4+). Finely ranking mild phenotypes is a difficult task for humans. In addition to providing assistance with this task, HairNet2 opens the door to selecting plants with specific leaf hairiness characteristics which may be associated with other beneficial traits to deliver better varieties.

4.
PLoS Negl Trop Dis ; 18(1): e0011868, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38175836

ABSTRACT

BACKGROUND: While much progress has been made in the control and elimination of onchocerciasis across Africa, the extent to which vector migration might confound progress towards elimination or result in re-establishment of endemism in areas where transmission has been eliminated remains unclear. In Northern Ethiopia, Metema and Metekel-two foci located near the Sudan border-exhibit continuing transmission. While progress towards elimination has been faster in Metema, there remains a problematic hotspot of transmission. Whether migration from Metekel contributes to this is currently unknown. METHODOLOGY/PRINCIPLE FINDINGS: To assess the role of vector migration from Metekel into Metema, we present a population genomics study of 151 adult female vectors using 47,638 RADseq markers and mtDNA CoI sequencing. From additional cytotaxonomy data we identified a new cytoform in Metema, closely related to S. damnosum s.str, here called the Gondar form. RADseq data strongly indicate the existence of two distinctly differentiated clusters within S. damnosum s.l.: one genotypic cluster found only in Metema, and the second found predominantly in Metekel. Because blackflies from both clusters were found in sympatry (in all four collection sites in Metema), but hybrid genotypes were not detected, there may be reproductive barriers preventing interbreeding. The dominant genotype in Metema was not found in Metekel while the dominant genotype in Metekel was found in Metema, indicating that (at the time of sampling) migration is primarily unidirectional, with flies moving from Metekel to Metema. There was strong differentiation between clusters but little genetic differentiation within clusters, suggesting migration and gene flow of flies within the same genetic cluster are sufficient to prevent genetic divergence between sites. CONCLUSIONS/SIGNIFICANCE: Our results confirm that Metekel and Metema represent different transmission foci, but also indicate a northward movement of vectors between foci that may have epidemiological importance, although its significance requires further study.


Subject(s)
Onchocerciasis , Simuliidae , Animals , Female , Onchocerciasis/epidemiology , Simuliidae/genetics , Ethiopia , Insect Vectors , Chromosomes
5.
Int J Parasitol ; 54(3-4): 171-183, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37993016

ABSTRACT

National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.


Subject(s)
Genome, Mitochondrial , Indans , Onchocerca volvulus , Onchocerciasis , Adult , Animals , Humans , Onchocerciasis/epidemiology , Onchocerciasis/prevention & control , Onchocerca volvulus/genetics , Africa, Western , Ivermectin/therapeutic use
6.
Trop Med Infect Dis ; 8(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37755906

ABSTRACT

WHO and endemic countries target elimination of transmission of Onchocerca volvulus, the parasite causing onchocerciasis. Population genetic analysis of O. volvulus may provide data to improve the evidence base for decisions on when, where, and for how long to deploy which interventions and post-intervention surveillance to achieve elimination. Development of necessary methods and tools requires parasites suitable for genetic analysis. Based on our experience with microfilariae obtained from different collaborators, we developed a microfilariae transfer procedure for large-scale studies in the Democratic Republic of Congo (DRC) comparing safety and efficacy of ivermectin, the mainstay of current onchocerciasis elimination strategies, and moxidectin, a new drug. This procedure is designed to increase the percentage of microfilariae in skin snips suitable for genetic analysis, improve assignment to metadata, and minimize time and materials needed by the researchers collecting the microfilariae. Among 664 microfilariae from South Sudan, 35.7% and 39.5% failed the mitochondrial and nuclear qPCR assay. Among the 576 microfilariae from DRC, 16.0% and 16.7% failed these assays, respectively. This difference may not only be related to the microfilariae transfer procedure but also to other factors, notably the ethanol concentration in the tubes in which microfilariae were stored (64% vs. ≥75%).

7.
Pathogens ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513818

ABSTRACT

Onchocerciasis is a neglected tropical disease targeted for elimination using ivermectin mass administration. Ivermectin kills the microfilariae and temporarily arrests microfilariae production by the macrofilariae. We genotyped 436 microfilariae from 10 people each in Ituri, Democratic Republic of the Congo (DRC), and Maridi County, South Sudan, collected before and 4-5 months after ivermectin treatment. Population genetic analyses identified 52 and 103 mitochondrial DNA haplotypes among the microfilariae from DRC and South Sudan, respectively, with few haplotypes shared between people. The percentage of genotype-based correct assignment to person within DRC was ~88% and within South Sudan ~64%. Rarefaction and extrapolation analysis showed that the genetic diversity in DRC, and even more so in South Sudan, was captured incompletely. The results indicate that the per-person adult worm burden is likely higher in South Sudan than DRC. Analyses of haplotype data from a subsample (n = 4) did not discriminate genetically between pre- and post-treatment microfilariae, confirming that post-treatment microfilariae are not the result of new infections. With appropriate sampling, mitochondrial haplotype analysis could help monitor changes in the number of macrofilariae in a population as a result of treatment, identify cases of potential treatment failure, and detect new infections as an indicator of continuing transmission.

8.
Front Plant Sci ; 13: 895877, 2022.
Article in English | MEDLINE | ID: mdl-35873986

ABSTRACT

Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.

9.
PLoS Negl Trop Dis ; 16(7): e0010620, 2022 07.
Article in English | MEDLINE | ID: mdl-35849615

ABSTRACT

BACKGROUND: Onchocerciasis is a neglected tropical filarial disease transmitted by the bites of blackflies, causing blindness and severe skin lesions. The change in focus for onchocerciasis management from control to elimination requires thorough mapping of pre-control endemicity to identify areas requiring interventions and to monitor progress. Onchocerca volvulus nodule prevalence in sub-Saharan Africa is spatially continuous and heterogeneous, and highly endemic areas may contribute to transmission in areas of low endemicity or vice-versa. Ethiopia is one such onchocerciasis-endemic country with heterogeneous O. volvulus nodule prevalence, and many districts are still unmapped despite their potential for onchocerciasis transmission. METHODOLOGY/PRINCIPLE FINDINGS: A Bayesian geostatistical model was fitted for retrospective pre-intervention nodule prevalence data collected from 916 unique sites and 35,077 people across Ethiopia. We used multiple environmental, socio-demographic, and climate variables to estimate the pre-intervention prevalence of O. volvulus nodules across Ethiopia and to explore their relationship with prevalence. Prevalence was high in southern and northwestern Ethiopia and low in Ethiopia's central and eastern parts. Distance to the nearest river (RR: 0.9850, 95% BCI: 0.9751-0.995), precipitation seasonality (RR: 0.9837, 95% BCI: 0.9681-0.9995), and flow accumulation (RR: 0.9586, 95% BCI: 0.9321-0.9816) were negatively associated with O. volvulus nodule prevalence, while soil moisture (RR: 1.0218, 95% BCI: 1.0135-1.0302) was positively associated. The model estimated the number of pre-intervention cases of O. volvulus nodules in Ethiopia to be around 6.48 million (95% BCI: 3.53-13.04 million). CONCLUSIONS/SIGNIFICANCE: Nodule prevalence distribution was correlated with habitat suitability for vector breeding and associated biting behavior. The modeled pre-intervention prevalence can be used as a guide for determining priorities for elimination mapping in regions of Ethiopia that are currently unmapped, most of which have comparatively low infection prevalence.


Subject(s)
Intestinal Volvulus , Onchocerca volvulus , Onchocerciasis , Animals , Bayes Theorem , Ethiopia/epidemiology , Humans , Ivermectin , Onchocerca , Onchocerciasis/epidemiology , Onchocerciasis/prevention & control , Prevalence , Retrospective Studies
10.
Front Plant Sci ; 13: 904131, 2022.
Article in English | MEDLINE | ID: mdl-35646011

ABSTRACT

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD). While the Australian industry is the focus, CSIRO cultivars have global impact in North America, South America, and Europe. The program is unique compared with many other public and commercial breeding programs because it focuses on diverse and integrated research with commercial outcomes. It represents the full research pipeline, supporting extensive long-term fundamental molecular research; native and genetically modified (GM) trait development; germplasm enhancement focused on yield and fiber quality improvements; integration of third-party GM traits; all culminating in the release of new commercial cultivars. This review presents evidence of past breeding successes and outlines current breeding efforts, in the areas of yield and fiber quality improvement, as well as the development of germplasm that is resistant to pests, diseases and abiotic stressors. The success of the program is based on the development of superior germplasm largely through field phenotyping, together with strong commercial partnerships with CSD and Bayer CropScience. These relationships assist in having a shared focus and ensuring commercial impact is maintained, while also providing access to markets, traits, and technology. The historical successes, current foci and future requirements of the CSIRO cotton breeding program have been used to develop a framework designed to augment our breeding system for the future. This will focus on utilizing emerging technologies from the genome to phenome, as well as a panomics approach with data management and integration to develop, test and incorporate new technologies into a breeding program. In addition to streamlining the breeding pipeline for increased genetic gain, this technology will increase the speed of trait and marker identification for use in genome editing, genomic selection and molecular assisted breeding, ultimately producing novel germplasm that will meet the coming challenges of the 21st Century.

11.
Plant Methods ; 18(1): 8, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35042523

ABSTRACT

BACKGROUND: Leaf hairiness (pubescence) is an important plant phenotype which regulates leaf transpiration, affects sunlight penetration, and provides increased resistance or susceptibility against certain insects. Cotton accounts for 80% of global natural fibre production, and in this crop leaf hairiness also affects fibre yield and value. Currently, this key phenotype is measured visually which is slow, laborious and operator-biased. Here, we propose a simple, high-throughput and low-cost imaging method combined with a deep-learning model, HairNet, to classify leaf images with great accuracy. RESULTS: A dataset of [Formula: see text] 13,600 leaf images from 27 genotypes of Cotton was generated. Images were collected from leaves at two different positions in the canopy (leaf 3 & leaf 4), from genotypes grown in two consecutive years and in two growth environments (glasshouse & field). This dataset was used to build a 4-part deep learning model called HairNet. On the whole dataset, HairNet achieved accuracies of 89% per image and 95% per leaf. The impact of leaf selection, year and environment on HairNet accuracy was then investigated using subsets of the whole dataset. It was found that as long as examples of the year and environment tested were present in the training population, HairNet achieved very high accuracy per image (86-96%) and per leaf (90-99%). Leaf selection had no effect on HairNet accuracy, making it a robust model. CONCLUSIONS: HairNet classifies images of cotton leaves according to their hairiness with very high accuracy. The simple imaging methodology presented in this study and the high accuracy on a single image per leaf achieved by HairNet demonstrates that it is implementable at scale. We propose that HairNet replaces the current visual scoring of this trait. The HairNet code and dataset can be used as a baseline to measure this trait in other species or to score other microscopic but important phenotypes.

12.
Int J Parasitol ; 51(2-3): 137-147, 2021 02.
Article in English | MEDLINE | ID: mdl-33166540

ABSTRACT

Over 892 million people in 48 countries are at risk of infection by nematodes that cause lymphatic filariasis. As part of the Global Programme to Eliminate Lymphatic Filariasis, mass drug administration is distributed to communities until surveillance indicates infection rates are below target prevalence thresholds. In some countries, including American Samoa, lymphatic filariasis transmission persists despite years of mass drug administration and/or has resurged after cessation. Nothing is known about the population genetics of Wuchereria bancrofti worms in Polynesia, or whether local transmission is persisting and/or increasing due to inadequate mass drug administration coverage, expansion from residual hotspots, reintroduction from elsewhere, or a combination. We extracted DNA from microfilariae on blood slides collected during prevalence surveys in 2014 and 2016, comprising 31 pools of five microfilariae from 22 persons living in eight villages. We sequenced 1104 bp across three mitochondrial markers (ND4, COI, CYTB). We quantified parasite genetic differentiation using variant calls and estimated haplotypes using principal components analysis, F-statistics, and haplotype networks. Of the variants called, all but eight were shared across the main island of Tutuila, and three of those were from a previously described hotspot village, Fagali'i. Genotypic data did not support population genetic structure among regions or villages in 2016, although differences were observed between worms collected in Fagali'i in 2014 and those from 2016. Because estimated haplotype frequency varied between villages, these statistics suggested genetic differentiation, but were not consistent among villages. Finally, haplotype networks demonstrated American Samoan sequence clusters were related to previously published sequences from Papua New Guinea. These are, to our knowledge, the first reports of W. bancrofti genetic variation in Polynesia. The resurgent parasites circulating on the main island of American Samoa represent a single population. This study is the first step towards investigating how parasite population structure might inform strategies to manage resurgence and elimination of lymphatic filariasis.


Subject(s)
Elephantiasis, Filarial , American Samoa/epidemiology , Animals , Elephantiasis, Filarial/epidemiology , Humans , Mass Drug Administration , Molecular Epidemiology , Wuchereria bancrofti/genetics
13.
J Adv Model Earth Syst ; 12(10): e2019MS002019, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33282114

ABSTRACT

Understanding the past, present, and future evolution of methane remains a grand challenge. Here we have used a hierarchy of models, ranging from simple box models to a chemistry-climate model (CCM), UM-UKCA, to assess the contemporary and possible future atmospheric methane burden. We assess two emission data sets for the year 2000 deployed in UM-UKCA against key observational constraints. We explore the impact of the treatment of model boundary conditions for methane and show that, depending on other factors, such as CO emissions, satisfactory agreement may be obtained with either of the CH4 emission data sets, highlighting the difficulty in unambiguous choice of model emissions in a coupled chemistry model with strong feedbacks. The feedbacks in the CH4-CO-OH system, and their uncertainties, play a critical role in the projection of possible futures. In a future driven by large increases in greenhouse gas forcing, increases in tropospheric temperature drive, an increase in water vapor, and, hence, [OH]. In the absence of methane emission changes this leads to a significant decrease in methane compared to the year 2000. However, adding a projected increase in methane emissions from the RCP8.5 scenario leads to a large increase in methane abundance. This is modified by changes to CO and NOx emissions. Clearly, future levels of methane are uncertain and depend critically on climate change and on the future emission pathways of methane and ozone precursors. We highlight that further work is needed to understand the coupled CH4-CO-OH system in order to understand better future methane evolution.

14.
Transgenic Res ; 29(5-6): 551, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33052558

ABSTRACT

Due to an unfortunate misunderstanding, an extra middle initial erroneously appeared in the original publication and the full name of the first author should read Shi Ming Liu.

15.
Transgenic Res ; 29(5-6): 529-550, 2020 12.
Article in English | MEDLINE | ID: mdl-32939587

ABSTRACT

Only a few transcription factors (TFs) regulating which cells of the ovule epidermis differentiate into lint fibres have been identified in cotton (Gossypium hirsutum L.). In this study, the effect on lint yield and fibre quality of over-expressing three TFs in cotton, GhHD-1, GhMYB25 and GhMYB25Like, and their double and triple combinations, were evaluated in field experiments over two seasons. The expression of single or stacked TFs were all driven either by an ovule-specific promoter, FBP 7, or a constitutive promoter, Stunt 7, in a Coker 315 background. TF type, either singly or in combination, was found to be the most significant factor affecting lint yield. Among 64 transgenic lines tested, seven were higher yielding than null segregant lines in one or both seasons and were all from the sets with single and double over-expressed TF combinations. A reduced yield was associated with the set of triple combinations. The two most stable high yielding lines across the seasons recorded 12-22% higher yields than the nulls, although were not competitive to locally adapted commercial controls. Over-expression of TFs singly or in combination did not significantly alter fibre length and strength, but sometimes increased fibre micronaire. There were positive relationships between lint yield and lint percentage and lint yield and fibre density amongst the transgenic lines. Our preliminary results suggest that manipulating TF expression, either singly or in pairs, can increase the density of fibres initiated on developing seeds and fibre yields under field conditions while maintaining overall fibre quality.


Subject(s)
Gossypium/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Cotton Fiber , Gene Expression Regulation, Plant , Gossypium/growth & development , Ovule/genetics , Ovule/growth & development , Plant Proteins/genetics , Promoter Regions, Genetic , Seeds/genetics
16.
Proc Natl Acad Sci U S A ; 117(30): 17913-17923, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32651273

ABSTRACT

Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.


Subject(s)
Chemoreceptor Cells/physiology , Host-Parasite Interactions , Nematoda/physiology , Nematode Infections/etiology , Skin/parasitology , Animals , Behavior, Animal , Carbon Dioxide , Humans , Life Cycle Stages , Odorants , Olfactory Receptor Neurons/physiology , Strongyloides stercoralis/pathogenicity , Strongyloides stercoralis/physiology , Temperature
17.
Int J Parasitol Parasites Wildl ; 10: 125-131, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31463190

ABSTRACT

Ticks are important vectors of a broad range of pathogens in Australia. Many tick species are morphologically similar and are therefore difficult to identify using morphology alone, particularly when collected in the larval and nymphal life stages. We report here the application of molecular methods to examine the species diversity of ixodid ticks at two sites in southern New South Wales, Australia. Our taxon sampling included six morphologically characterised adult stage voucher specimens of Ixodes trichosuri, Ixodes tasmani, Ixodes fecialis and Ixodes holocyclus (the paralysis tick) and ~250 field collected specimens that were in the larva or nymph stage and thus not morphologically identifiable. One nuclear and two mitochondrial amplicons were sequenced using a combination of Sanger and Illumina MiSeq sequencing. Phylogenetic relationships were estimated using both maximum likelihood and Bayesian methods. Two clades with strong bootstrap and Bayesian support were observed across trees estimated from each of three markers and from an analysis of the concatenated sequences. One voucher specimen of I. trichosuri was located in one of these clades, while the other I. trichosuri voucher specimen was in a second clade with the remaining three identified species, suggesting these morphologically similar ticks may represent different cryptic species. Unidentified specimens were found across both clades, and molecular divergence of many of these is equal to or greater than that observed between identified species, suggesting additional unidentified species may exist. Further studies are required to understand the taxonomic status of ticks in Australia, and how this species diversity impacts disease risk for livestock, domestic animals, wildlife and humans.

18.
Front Genet ; 10: 1282, 2019.
Article in English | MEDLINE | ID: mdl-31998356

ABSTRACT

Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.

19.
PLoS Negl Trop Dis ; 11(7): e0005816, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746337

ABSTRACT

BACKGROUND: Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. METHODOLOGY/PRINCIPAL FINDINGS: Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. CONCLUSIONS/SIGNIFICANCE: This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations.


Subject(s)
Antiparasitic Agents/pharmacology , Drug Resistance , Gene Expression Profiling , Genetic Drift , Ivermectin/pharmacology , Onchocerca volvulus/drug effects , Onchocerca volvulus/genetics , Animals , Cameroon , Female , Genetic Variation , Genotype , Ghana , High-Throughput Nucleotide Sequencing , Humans , Onchocerca volvulus/classification , Onchocerciasis/parasitology , Quantitative Trait Loci
20.
PLoS Genet ; 13(6): e1006857, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28644839

ABSTRACT

Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.


Subject(s)
Anthelmintics/therapeutic use , Drug Resistance/genetics , Trichostrongyloidea/genetics , Trichostrongyloidiasis/drug therapy , Animals , Chromosome Mapping , DNA Copy Number Variations/genetics , Genotype , Humans , Sheep/parasitology , Trichostrongyloidea/drug effects , Trichostrongyloidea/pathogenicity , Trichostrongyloidiasis/genetics , Trichostrongyloidiasis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...