Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 413: 125274, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33609867

ABSTRACT

Contamination encountered on nuclear sites includes radionuclides as well as a range of non-radioactive co-contaminants, often in low-permeability substrates such as concretes or clays. However, many commercial remediation techniques are ineffective in these substrates. By contrast, electrokinetic remediation (EKR), where an electric current is applied to remove contaminants from the treated media, retains high removal efficiencies in low permeability substrates. Here, we evaluate recent developments in EKR for the removal of radionuclides in contaminated substrates, including caesium, uranium and others, and the current benefits and limitations of this technology. Further, we assess the present state of EKR for nuclear site applications using real-world examples, and outline key areas for future application.

2.
Anal Chim Acta ; 890: 7-20, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26347165

ABSTRACT

Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products ((135)Cs and (137)Cs) and activation products ((134)Cs and (136)Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst (137)Cs, (134)Cs and (136)Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived (135)Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the (135)Cs/(137)Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products (134)Cs and (136)Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics. Detection of (135)Cs (and (137)Cs) is achievable by mass spectrometric techniques; most commonly inductively coupled plasma mass spectrometry (ICP-MS), as well as thermal ionisation (TIMS), accelerator (AMS) and resonance ionisation (RIMS) techniques. The critical issues affecting the accuracy and detection limits achievable by this technique are effective removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba, and elimination of peak tailing of stable (133)Cs on (135)Cs. Isobaric interferences can be removed by chemical separation, most commonly ion exchange chromatography, and/or instrumental separation using an ICP-MS equipped with a reaction cell. The removal of the peak tailing interference is dependent on the instrument used for final measurement. This review summarizes and compares the analytical procedures developed for determination of (135)Cs/(137)Cs, with particular focus on ICP-MS detection and the methods applied to interference separation.

3.
Anal Chem ; 86(23): 11890-6, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25374264

ABSTRACT

Advances in the sensitivities achievable by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) offer the prospect of low-level measurement of shorter and longer lived radionuclides, thus expanding options for environmental and radioactively contaminated land assessment. In ICP-SFMS, the critical requirement for accurate detection is the effective chemical separation of isobaric and polyatomic interferences prior to sample introduction. As instrumental detection limit capability improves, accurate radionuclide determination requires highly effective separation materials that combine high analyte selectivity with subsequent quantitative analyte recovery compatible with ICP-SFMS detection. Two radioactive isotopes measurable by ICP-SFMS are the high yield fission products (135)Cs and (137)Cs that have entered the environment as a result of anthropogenic nuclear activities. ICP-SFMS enables reliable measurement of (135)Cs/(137)Cs ratios, which can be used as a forensic tool in determining the source of nuclear contamination. The critical requirement for accurate detection is the effective removal of isobaric interferences from (135)Ba and (137)Ba prior to measurement. A number of exchange materials can effectively extract Cs; however, non-quantitative elution of Cs makes subsequent ICP-SFMS quantification challenging. A novel extraction chromatographic resin has been developed by dissolving calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) in octan-1-ol and loading onto an Amberchrom CG-71 prefilter resin material. Preparation of the material takes less than 1 h and, at an optimal concentration of 3 M HNO3, shows high selectivity toward Cs, which is effectively eluted in 0.05 M HNO3. The procedure developed shows high Cs selectivity and Ba decontamination from digests of complex matrixes including a saltmarsh sediment contaminated by aqueous discharges from a nuclear fuel reprocessing facility. Repeated tests show the resin can be reused up to four times. For low-level ICP-SFMS quantification, more complex sample matrixes benefit from a cation resin cleanup stage prior to using BOBCalixC6 that serves to enhance Ba decontamination and Cs recovery.

4.
Anal Chem ; 86(17): 8719-26, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25109496

ABSTRACT

Recent advances in sector field inductively coupled plasma mass spectrometry (ICP-SFMS) have led to significant sensitivity enhancements that expand the range of radionuclides measurable by ICP-MS. The increasing capability and performance of modern ICP-MS now allows analysis of medium-lived radionuclides previously undertaken using radiometric methods. A new generation ICP-SFMS was configured to achieve sensitivities up to 80,000 counts per second for a 1 ng/L (133)Cs solution, providing a detection limit of 1 pg/L. To extend this approach to environmental samples it has been necessary to develop an effective chemical separation scheme using ultrapure reagents. A procedure incorporating digestion, chemical separation and quantification by ICP-SFMS is presented for detection of the significant fission product radionuclides of cesium ((135)Cs and (137)Cs) at concentrations found in environmental and low level nuclear waste samples. This in turn enables measurement of the (135)Cs/(137)Cs ratio, which varies with the source of nuclear contamination, and can therefore provide a powerful dating and forensic tool compared to radiometric detection of (137)Cs alone. A detection limit in sediment samples of 0.05 ng/kg has been achieved for (135)Cs and (137)Cs, corresponding to 2.0 × 10(-3) and 160 mBq/kg, respectively. The critical issue is ensuring removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba. The ability to reliably measure (135)Cs/(137)Cs using a high specification laboratory ICP-SFMS now enables characterization of waste materials destined for nuclear waste repositories as well as extending options in environmental geochemical and nuclear forensics studies.

5.
Anal Chem ; 86(18): 9177-85, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25155292

ABSTRACT

Understanding the association and retention of tritium in metals has significance in nuclear decommissioning programs and can lead to cost benefits through waste reduction and recycling of materials. To develop insights, a range of metals from two nuclear sites and one non-nuclear site were investigated which had different exposure histories. Tritium speciation in metals was inferred through incremental heating experiments over the range of 20-900 °C using a Raddec Pyrolyser instrument. Systematic differences in thermal desorption profiles were found for nonirradiated and irradiated metals. In nonirradiated metals (e.g., stainless steel and copper), it was found that significant tritium had become incorporated following prolonged exposure to tritiated water vapor (HTO) or tritium/hydrogen gas (HT) in nuclear facilities. This externally derived tritium enters metals by diffusion with a rate controlled by the metal composition and whether the surface of the metal had been sealed or coated prior to exposure. The tritium is normally trapped in hydrated oxides lying along grain boundaries. In irradiated metals, an additional type of tritium can form internally through neutron capture reactions. The amount formed depends on the concentration and distribution of trace lithium and boron in the metal as well as the integrated neutron flux. Liberating this kind of tritium typically requires temperatures above 800 °C. The pattern of tritium evolution derived from simple thermal desorption experiments allows reliable inferences to be drawn on the likely origin, location, and phases that trap tritium. Any weakly bound tritium liberated at temperatures of ~100 °C is indicative of mostly HTO interactions in the metal. Any strongly bound tritium liberated over the range of 600-900 °C is indicative of neutrogenic tritium formed via neutron capture by trace Li and B. Neutron capture by lithium is likely to be more significant than for boron based on lithium's higher trace element abundance and neutron cross section. The time required for efficient thermal desorption of tritium ultimately depends on the metal composition, its tritium exposure history, integrated neutron flux, sample size, sample geometry, heating rate, and final desorption temperature.

6.
Anal Chem ; 85(17): 8166-72, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23834242

ABSTRACT

There is broad international interest, particularly with Homeland Security and first-responder organizations, in developing a range of effective, robust, and rapid analytical tools to identify terrorist assaults. Accidental or intentional radionuclide contamination of drinking water supplies would have significant public health, social, political, and financial implications even where the real risk might be small given public perception. Rapid identification and assessment of the magnitude of any contamination is critical in managing any threat and ultimately in allaying public and regulator concerns and in steering subsequent remediation operations. Conventional screening techniques do not provide information of the radionuclide present, and subsequent identification techniques are too time-consuming and require some prior knowledge of the nuclide identity to permit accurate quantification. The development described here presents a novel, rapid, and effective radiometric approach using industry-standard liquid scintillation counting equipment that can both identify and quantify alpha and beta radionuclide contamination within 1 h of sample receipt. The liquid scintillation counting (LSC) or liquid scintillation analysis (LSA) method, though widely used by the life science and the (14)C scientific communities since the 1960s, has greater potential than is often used. The technique developed here, which uses multiple quench parameters for nuclide identification, has been tested on both contaminated drinking waters and pipeline scales with compositions typical of those that might be encountered. It is shown to be highly effective both in terms of rapidly identifying the radionuclide and providing a measure of the quantity of radionuclide present. The whole procedure is about to be developed into an integrated analytical system for use by untrained personnel. It is notable that the development could also be readily applied as a QC procedure in routine radioanalytical measurements.


Subject(s)
Drinking Water/analysis , Environmental Monitoring/methods , Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Scintillation Counting/methods , Water Supply/analysis
7.
Appl Radiat Isot ; 69(10): 1323-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21696972

ABSTRACT

An intercomparison exercise to determine the (14)C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing (14)C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.


Subject(s)
Carbon Radioisotopes/analysis , Environmental Monitoring/methods , Reference Standards , Limit of Detection , Quality Control , Sensitivity and Specificity
8.
FEMS Microbiol Lett ; 294(2): 225-31, 2009 May.
Article in English | MEDLINE | ID: mdl-19431239

ABSTRACT

Hydrophobic surfactants at the air-sea interface can retard evaporative and gaseous exchange between the atmosphere and the ocean.While numerous studies have examined the metabolic role of bacterioneuston at the air-sea interface, the interactions between hydrophobic surfactants and bacterioplankton are not well constrained. A novel experimental design was developed, using Vibrio natriegens and (3)H-labelled hexadecanoic acid tracer, to determine how the bacterial metabolism of fatty acids affects evaporative fluxes. In abiotic systems, >92% of the added hexadecanoic acid remained at the air-water interface. In contrast, the presence of V. natriegens cells draws down insoluble hexadecanoic acid from the air-water interface as an exponential function of time. The exponents characterizing the removal of hexadecanoic acid from the interface co-vary with the concentration of V. natriegens cells in the underlying water, with the largest exponent corresponding to the highest cell abundance. Radiochemical budgets show that evaporative fluxes from the system are linearly proportional to the quantity of hexadecanoic acid at the interface. Thus, bacterioplankton could influence the rate of evaporation and gas transfer in the ocean through the metabolism of otherwise insoluble surfactants.


Subject(s)
Gases/chemistry , Phase Transition , Plankton/microbiology , Surface-Active Agents/metabolism , Vibrio/metabolism , Water Microbiology , Air , Animals , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Plankton/metabolism , Radioactive Tracers , Seawater , Vibrio/chemistry , Vibrio/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...