Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 21(7): 3084-3102, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38828798

ABSTRACT

Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.


Subject(s)
Lipids , Nanoparticles , Nanoparticles/chemistry , Humans , Lipids/chemistry , Drug Delivery Systems/methods , Lung/metabolism , Lung/drug effects , Drug Carriers/chemistry , Animals , Biological Products/administration & dosage , Biological Products/chemistry , Liposomes
2.
Pharmaceutics ; 14(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365135

ABSTRACT

Amphotericin B (AmpB) is a polyene macrolide antibiotic used in the treatment of blood-borne parasitic and fungal infections. However, its use, particularly in the developing world, has been limited by dose-dependent kidney toxicity, other systemic-related toxicity issues following injection, the inconvenience of parenteral administration, and accessibility. Oral formulation approaches have focused on the dual problem of solubility and permeability of AmpB, which is poorly water soluble, amphoteric and has extremely low oral bioavailability. Therefore, to enhance oral absorption, researchers have employed micellar formulations, polymeric nanoparticles, cochleates, pro-drugs, and self-emulsifying drug delivery systems (SEDDS). This paper will highlight current uses of AmpB against parasitic infections such as leishmaniasis, preclinical and clinical formulation strategies, applications in veterinary medicine and the importance of developing a cost-effective and safe oral AmpB formulation.

3.
Mol Pharm ; 19(6): 1814-1824, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35302764

ABSTRACT

Continuous outbreaks of pertussis around the world suggest inadequate immune protection in infants and weakened immune responses induced over time by the acellular pertussis vaccine. Vaccine adjuvants provide a means to improve vaccine immunogenicity and support long-term adaptive immunity against pertussis. An acellular pertussis vaccine was prepared with pertactin, pertussis toxin, and fimbriae 2/3 antigens combined with a triple-adjuvant system consisting of innate defense regulator peptide IDR 1002, a Toll-like receptor-3 agonist poly(I:C), and a polyphosphazene in a fixed combination. The vaccine was delivered intranasally in a cationic lipid nanoparticle formulation fabricated by simple admixture and two schema for addition of antigens (LT-A, antigens associated outside of L-TriAdj, and LAT, antigens associated inside of L-TriAdj) to optimize particle size and cationic surface charge. In the former, antigens were associated with the lipidic formulation of the triple adjuvant by electrostatic attraction. In the latter, the antigens resided in the interior of the lipid nanoparticle. Two dose levels of antigens were used with adjuvant comprised of the triple adjuvant with or without the lipid nanoparticle carrier. Formulation of vaccines with the triple adjuvant stimulated systemic and mucosal immune responses. The lipid nanoparticle vaccines favored a Th1 type of response with higher IgG2a and IgA serum antibody titers particularly for pertussis toxin and pertactin formulated at the 5 µg dose level in the admixed formulation. Additionally, the lipid nanoparticle vaccines resulted in high nasal SIgA antibodies and an early (4 weeks post vaccination) response after a single vaccination dose. The LT-A nanoparticles trended toward higher titers of serum antibodies compared to LAT. The cationic lipid-based vaccine nanoparticles formulated with a triple adjuvant showed encouraging results as a potential formulation for intranasally administered pertussis vaccines.


Subject(s)
Adjuvants, Immunologic , Liposomes , Nanoparticles , Pertussis Vaccine , Whooping Cough , Animals , Antibodies, Bacterial , Bordetella pertussis , Cations , Humans , Liposomes/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Pertussis Toxin/administration & dosage , Pertussis Toxin/immunology , Pertussis Vaccine/administration & dosage , Pertussis Vaccine/chemistry , Pertussis Vaccine/immunology , Vaccination , Whooping Cough/prevention & control
4.
Pharmaceutics ; 13(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683979

ABSTRACT

The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.

5.
Bone Rep ; 14: 100753, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33665236

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the efficacy and toxicity of a novel lanthanum compound, La(XT), in an ovariectomized (OVX) rat model of osteoporosis. METHODS: Twenty-four ovariectomized female Sprague Dawley rats were divided into 3 groups receiving a research diet with/without treatment compounds (alendronate: 3 mg/kg; La(XT) 100 mg/kg) for three months. At the time of sacrifice, the kidney, liver, brain, lung and spleen were collected for histological examination. The trabecular bone structure of the tibiae was evaluated using micro-CT and a three-point metaphyseal mechanical test was used to evaluate bone failure load and stiffness. RESULTS: No significant differences were noted in plasma levels of calcium, phosphorus, creatinine, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) between the La(XT) treatment compared to the non-treated OVX group. Alendronate-treated animals (positive control) showed higher BV/TV, Tb.N and lower Tb.Th and Tb.Sp when compared to the non-treated OVX group. Mechanical analysis indicated that stiffness was higher in the alendronate (32.88%, p = 0.04) when compared to the non-treated OVX group. Failure load did not differ among the groups. CONCLUSIONS: No kidney or liver toxicities of La(XT) treatments were found during the three-month study. The absence of liver and kidney toxicity with drug treatment for 3 months, as well as the increased trabecular bone stiffness are encouraging for the pursuit of further studies with La(XT) for a longer duration of time.

6.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article in English | MEDLINE | ID: mdl-32816728

ABSTRACT

The purpose of this study was to assess the safety, tolerability, pharmacokinetics (PK), and biodistribution of novel oral amphotericin B (AmpB) formulations following single- and multiple-oral-dose administration to healthy beagle dogs. The liquid formulation of AmpB was administered to three male dogs, and the capsule formulations of AmpB were administered to each of two groups of six male dogs. Blood was collected for pharmacokinetic evaluation on days 1, 2, and 3 (up to 72 h postdosing). Dogs receiving the capsule formulations further received a single oral dose of 100 mg once daily for three more days, and on the 4th day, blood samples were taken at 24 h postdosing and the dogs were humanely sacrificed with the removal of organs, from which tissue samples were taken for analysis of the AmpB content. Multiple-dose studies were completed for 7 or 14 days with daily doses of up to 1,000 mg/day with the capsule formulations. All oral formulations of AmpB following both single- and multiple-dose administration were well tolerated in the dogs, and there were no relevant adverse signs observed, such as changes in hematologic, coagulation, or biochemistry parameters; loss of weight; changes in food or water intake; or signs of gastrointestinal distress. The oral absorption of AmpB from the liquid formulation and the capsule formulations were similar, with no significant differences. The tissue distributions of AmpB were similar following repeated doses of the two capsule formulations to dogs. Following 14 days of treatment with the iCo-010 liquid formulation and the iCo-019 and iCo-022 capsule formulations, the range of values of the maximum observed plasma concentration (Cmax) was 53.2 to 62.3, 24.9 to 66.4, and 36.7 to 85.2 ng/ml, respectively; the range of values of the time to Cmax was 4 to 12, 4 to 24, and 2 to 24 h, respectively; and the range of values of the area under the plasma concentration-time curve from time zero to the time of the last quantifiable concentration was 2,635 to 3,071, 1,053 to 2,517, and 1,443 to 3,713 ng · h/ml, respectively. We have developed a safe novel oral AmpB formulation suitable for future efficacy studies.


Subject(s)
Amphotericin B , Administration, Oral , Animals , Area Under Curve , Dogs , Male , Tissue Distribution
7.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32690643

ABSTRACT

This study evaluated the safety, tolerability, and pharmacokinetics of a novel oral amphotericin B (AmB) formulation (iCo-019) following single doses to healthy humans. The data from this study suggest that iCo-019 has a long circulation time and systemic exposure without the associated gastrointestinal, liver, and kidney toxicity associated with AmB. This novel oral AmB formulation can serve as a new treatment strategy to overcome the limitations of the use of parenterally administered AmB products.


Subject(s)
Amphotericin B , Liver , Administration, Oral , Amphotericin B/adverse effects , Antifungal Agents/adverse effects , Humans , Research Subjects
8.
Pharmaceutics ; 11(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717566

ABSTRACT

Raynaud's Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment to reduce the incidence and severity of attacks when other interventions fail to alleviate the condition and there is danger of tissue injury. Oral administration of nifedipine, however, is associated with systemic adverse effects, and thus topical administration with nifedipine locally to the extremities would be advantageous. However, nifedipine is subject to rapid photodegradation, which is problematic for exposed skin such as the hands. The goal of this project was to analyze the photostability of a novel topical nifedipine cream to UVA light. The effect of incorporating the photoprotectants rutin, quercetin, and/or avobenzone (BMDBM) into the nifedipine cream on the stability of nifedipine to UVA light exposure and the appearance of degradation products of nifedipine was determined. Rutin and quercetin are flavonoids with antioxidant activity. Both have the potential to improve the photostability of nifedipine by a number of mechanisms that either quench the intermolecular electron transfer of the singlet excited dihydropyridine to the nitrobenzene group or by preventing photoexcitation of nifedipine. Rutin at either 0.1% or 0.5% (w/w) did not improve the stability of nifedipine 2% (w/w) in the cream after UVA exposure up to 3 h. Incorporation of quercetin at 0.5% (w/w) did improve nifedipine stability from 40% (no quercetin) to 77% (with quercetin) of original drug concentration after 3 h UVA exposure. A combination of BMDBM and quercetin was the most effective photoprotectant for maintaining nifedipine concentration following up to 8 h UVA exposure.

9.
Pharmaceutics ; 11(3)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813569

ABSTRACT

Parenteral amphotericin B has been considered as first-line therapy in the treatment of systemic fungal and parasitic infections, however its use has been associated with a number of limitations including affordability, accessibility, and an array of systemic toxicities. Until very recently, it has been very challenging to develop a bioavailable formulation of amphotericin B due to its physical chemical properties, limited water and lipid solubility, and poor absorption. This perspective reviews several novel oral Amphotericin B formulations under development that are attempting to overcome these limitations.

10.
Can J Anaesth ; 66(7): 803-812, 2019 07.
Article in English | MEDLINE | ID: mdl-30877585

ABSTRACT

PURPOSE: Hyperbaric bupivacaine (0.75% in dextrose) is used for spinal obstetric anesthesia. Occasional clusters of anesthetic failures occur in this setting, not readily attributable to clinical factors. We hypothesized that cold temperature exposure is related to bupivacaine instability. METHODS: An electronic survey was distributed to Canadian anesthesiologists to determine consistencies in spinal anesthesia practice, and to invite submission of failed bupivacaine samples for analysis. Another survey for hospital pharmacists focused on bupivacaine logistics. Ultraviolet (UV) spectrometry, differential scanning calorimetry, and high performance liquid chromatography were used to evaluate the effect of temperature on bupivacaine chemical stability. Mass spectrometry (MS) was used to observe bupivacaine and dextrose degradation in laboratory samples of hyperbaric 0.75% bupivacaine in dextrose. Hyperbaric bupivacaine that failed to produce adequate anesthesia in labour and delivery patients was subject to tandem MS/MS analysis on commonly observed ions to look for ion patterns consistent with bupivacaine degradation products and to compare with laboratory samples subjected to cold temperatures. RESULTS: Canadian obstetric anesthesiologists report similar practices and use hyperbaric bupivacaine for spinal anesthesia. Pharmacists surveyed indicated facility storage at room temperature but variable temperatures during shipping. No standard procedure for failure reporting was identified. Analysis of bupivacaine showed a slight decrease in bupivacaine concentration or UV spectral changes after incubation at temperatures ≤ 4°C. Mass spectrometric analysis of hyperbaric bupivacaine from failed spinal anesthesia cases showed complex and inconsistent patterns of ion formation, and different from the ion patterns observed for cooled vs uncooled bupivacaine solutions. Temperature-related changes were noted for dextrose in cooled samples in which dextrose-related ions were formed. CONCLUSIONS: Canadian clinical practice and handling of hyperbaric bupivacaine is consistent. Most respondents indicated an interest in a formal reporting and collection process. Cold exposure did not degrade bupivacaine. A complex and possibly inconsistent reaction involving dextrose was identified that requires further analysis of a larger sample size to elucidate the mechanisms.


RéSUMé: OBJECTIF: La bupivacaïne hyperbare (0,75 % dans du dextrose) est utilisée pour l'anesthésie obstétricale rachidienne. Il arrive parfois que plusieurs anesthésies rapprochées soient inefficaces dans cette situation, et ces échecs ne sont pas nécessairement attribuables à des facteurs cliniques. Nous avons émis l'hypothèse qu'une exposition de la bupivacaïne au froid expliquerait son instabilité. MéTHODE: Un sondage électronique a été distribué aux anesthésiologistes canadiens afin de déterminer les similitudes dans la pratique de la rachianesthésie, et nous avons invité les médecins à nous envoyer des échantillons de bupivacaïne à des fins d'analyse lorsque leur anesthésie était inefficace. Un autre sondage, envoyé aux pharmaciens hospitaliers, mettait l'emphase sur la logistique entourant la manutention de la bupivacaïne. Nous avons utilisé une spectrométrie de rayons ultraviolets (UV), une analyse calorimétrique différentielle et une chromatographie liquide à haute performance afin d'évaluer l'effet de la température sur la stabilité chimique de la bupivacaïne. Une spectrométrie de masse (SM) a été utilisée pour observer la dégradation de la bupivacaïne et du dextrose dans des échantillons de laboratoire de bupivacaïne hyperbare 0,75 % dans le dextrose. La bupivacaïne hyperbare qui n'a pas procuré une anesthésie adéquate chez des patientes en travail ou en accouchement a été sujette à une analyse de SM/SM en tandem sur les ions fréquemment observés afin d'identifier des modèles ioniques correspondant aux produits de dégradation de la bupivacaïne et les comparer à des échantillons de laboratoire soumis au froid. RéSULTATS: Les anesthésiologistes obstétricaux canadiens font état de pratiques semblables et utilisent de la bupivacaïne hyperbare pour réaliser une rachianesthésie. Les pharmaciens interrogés ont indiqué que la bupivacaïne était entreposée à température ambiante au sein de leur établissement mais qu'elle était exposée à des températures variables pendant l'expédition. Aucune procédure standardisée n'a été identifiée pour rapporter les échecs d'anesthésie. L'analyse de la bupivacaïne a montré une légère réduction dans la concentration de bupivacaïne ou des changements spectraux UV après une période d'incubation à des températures ≤ 4°C. L'analyse par spectrométrie de masse des échantillons de bupivacaïne hyperbare utilisés lors d'échecs de la rachianesthésie a révélé des types de formation des ions complexes et incohérents, lesquels différaient des modèles des ions observés dans les solutions de bupivacaïne refroidies vs non refroidies. Les changements liés à la température ont été notés sur le dextrose dans les échantillons refroidis dans lesquels des ions liés au dextrose se sont formés. CONCLUSION: La pratique clinique canadienne et la manutention de la bupivacaïne hyperbare est homogène. La plupart des répondants ont indiqué être intéressés par un processus formel d'enregistrement et de récolte des données. L'exposition au froid n'a pas dégradé la bupivacaïne. Une réaction complexe et possiblement inconstante ayant un rapport avec le dextrose a été identifiée; elle requiert des analyses approfondies sur un échantillonnage plus important afin d'en élucider les mécanismes.


Subject(s)
Anesthesia, Obstetrical/methods , Anesthesia, Spinal/methods , Anesthetics, Local/administration & dosage , Bupivacaine/administration & dosage , Anesthesiologists/statistics & numerical data , Anesthetics, Local/chemistry , Bupivacaine/chemistry , Cold Temperature , Cross-Sectional Studies , Drug Stability , Drug Storage , Female , Glucose/chemistry , Humans , Pharmacists/statistics & numerical data , Pregnancy , Surveys and Questionnaires
11.
Vaccine ; 37(11): 1503-1515, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30739796

ABSTRACT

We previously developed an highly efficacious combination adjuvant comprised of innate defense regulator (IDR)-1002 peptide, poly(I:C) and polyphosphazene (TriAdj). Here we aimed to design and test the in vivo efficacy of a mucoadhesive nasal formulation of this adjuvant. To determine the physical properties of the formulation, the effect of addition of each individual component was characterised by gel electrophoresis and fluorescence quenching using rhodamine-poly(I:C). Cationic liposomes comprised of didodecyl dimethylammonium bromide (DDAB), dioleoyl phosphatidylethanolamine (DOPE) (50:50 or 75:25 mol:mol) and DDAB, L-α-phosphatidylcholine (egg PC) and DOPE (40:50:10 mol:mol:mol) were prepared by the thin-film extrusion method. The liposomes and TriAdj were combined by simple mixing. The formed complex (L-TriAdj) was characterized by dynamic light scattering, zeta potential, and mucin interactions. We found that IDR-1002 peptide, polyphosphazene and poly(I:C) self-assembled in solution forming an anionic complex. Exposure of RAW267.4 mouse macrophage cells to TriAdj alone vs. L-TriAdj indicated that DDAB/DOPE (50:50) and DDAB/EPC/cholesterol (40:50:10) complexation reduced TriAdj toxicity. Next, TriAdj-containing cationic liposomes were prepared at several molar ratios to determine optimal size, stability and desired positive charge. Transmission electron microscopy showed rearrangement of lipid structures on binding of liposomes to TriAdj and to mucin. Stable particles (<200 nm over 24 h) showed mucin binding of DDAB/DOPE + TriAdj was greater than DDAB/EPC/DOPE + TriAdj. To verify in vivo efficacy, mice were administered the DDAB/DOPE + TriAdj complex intranasally with ovalbumin as the antigen, and the immunogenic response was measured by ELISA (serum IgG1, IgG2a, IgA) and ELISpot assays (splenocyte IL-5, IFN-γ). Mice administered adjuvant showed a significantly greater immune response with L-TriAdj than TriAdj alone, with a dose-response proportionate to the triple adjuvant content, and an overall balanced Th1/Th2 immune response representing both systemic and mucosal immunity.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Immunity, Mucosal , Liposomes/administration & dosage , Liposomes/pharmacology , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Cations , Enzyme-Linked Immunospot Assay , Female , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Mucins/metabolism , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/pharmacology , Peptides/administration & dosage , Peptides/pharmacology , Poly I-C/administration & dosage , Poly I-C/pharmacology , Polymers/administration & dosage , Polymers/pharmacology , RAW 264.7 Cells , Th1 Cells/immunology , Th1-Th2 Balance , Viral Fusion Proteins/immunology
12.
Drug Dev Ind Pharm ; 45(1): 76-87, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30169982

ABSTRACT

OBJECTIVE: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro. METHODS: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization. RESULTS: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12 h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin. CONCLUSION: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.


Subject(s)
Chitosan/chemical synthesis , Drug Carriers/chemical synthesis , Drug Development/methods , Immunosuppressive Agents/chemical synthesis , Mycophenolic Acid/chemical synthesis , Nanoparticles/chemistry , Administration, Oral , Chitosan/administration & dosage , Chitosan/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/metabolism , Drug Carriers/administration & dosage , Drug Carriers/metabolism , Drug Delivery Systems/methods , Drug Liberation , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/metabolism , Mycophenolic Acid/administration & dosage , Mycophenolic Acid/metabolism , Nanoparticles/administration & dosage , Nanoparticles/metabolism
13.
Drug Dev Ind Pharm ; 45(1): 21-26, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30113235

ABSTRACT

PURPOSE: CPX-351 is a liposomal formulation of cytarabine and daunorubicin encapsulated at a 5:1 molar ratio, for the treatment of acute myeloid leukemia. The Scavenger Receptor class B type I (SR-BI) plays an important role in mediating the uptake of high-density lipoproteins. The purpose of this study is to assess the role of the cell surface lipoprotein receptor SR-BI in the uptake of CPX-351 liposomes (Jazz Pharmaceuticals) into K562 leukemia cells. METHODS: K562 cells were pre-treated with 10 nM siRNA for 48 h and then treated with varying amount of CPX-351 for 24, 48 and 72 h. Cells were then collected and analyzed at 480/590 nm on a CytoFLEX Multicolour flow instrument to determine cellular uptake of daunorubicin. Experimental data were analyzed using two-way ANOVA with Bonferroni multiple comparisons. Significance was set at p < .05. RESULTS: K562 cells pre-treated with SR-BI siRNA for 48 h had a reduced SRB1 cell surface concentration (74-85%). Addition of CPX-351 at 10-50 nM followed by measurement of cellular daunorubicin at 48, 48 or 72 h showed a significantly lower percentage of daunorubicin positive population compared with control K562 cells (p < .05). There was significantly less daunorubicin taken up in the SR-BI knock-down cells across all drug concentrations and at all three time points, although there were no concentration-related trends. CONCLUSIONS: These preliminary studies suggest that SR-BI may be one potential mechanism by which CPX-351 is taken up into K562 cells.


Subject(s)
Cell Membrane/metabolism , Cytarabine/metabolism , Daunorubicin/metabolism , Scavenger Receptors, Class B/metabolism , Cell Membrane/drug effects , Cytarabine/pharmacology , Daunorubicin/pharmacology , Humans , K562 Cells , RNA, Small Interfering/pharmacology , Receptors, Scavenger/metabolism
14.
Pharmaceutics ; 9(4)2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29156634

ABSTRACT

The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

15.
Drug Dev Ind Pharm ; 43(11): 1743-1758, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28673096

ABSTRACT

Lipid-based drug delivery systems (LBDDS) are one of the most studied bioavailability enhancement technologies and are utilized in a number of U.S. Food and Drug Administration (FDA) approved drugs. While researchers have used several general rules of thumb to predict which compounds are likely to benefit from LBDDS, formulation of lipid systems is primarily an empiric endeavor. One of the challenges is that these rules of thumb focus in different areas and are used independently of each other. The Developability Classification System attempts to link physicochemical characteristics with possible formulation strategies. Although it provides a starting point, the formulator still has to empirically develop the formulation. This article provides a review and quantitative analysis of the molecular properties of these approved drugs formulated as lipid systems and starts to build an approach that provides more directed guidance on which type of lipid system is likely to be the best for a particular drug molecule.


Subject(s)
Drug Delivery Systems/methods , Lipids/analysis , Lipids/chemistry , Biological Availability , Chemistry, Pharmaceutical , Drug Approval , Humans , United States
16.
Drug Deliv Transl Res ; 7(4): 466-481, 2017 08.
Article in English | MEDLINE | ID: mdl-28589453

ABSTRACT

The targeting and delivery of therapeutic and diagnostic agents to bone tissue presents both a challenge and opportunity. Osteoporosis, Paget's disease, cancer, and bone metastases are all skeletal diseases whose treatment would benefit from new targeted therapeutic strategies. Osteoporosis, in particular, is a very prevalent disease, affecting over one in three women and one in five men in Canada alone with the cost to the healthcare system estimated at over $2.3 billion in 2010. Bone tissue is often considered a rigid structure when in reality there is a process of continuous remodeling that takes place via complex endocrine-regulated cell signaling pathways in addition to the signaling pathways unique to bone tissue. It is these specific boneremodeling processes that provide unique targeting opportunities but also present a number of challenges.


Subject(s)
Bone Diseases/drug therapy , Anabolic Agents/therapeutic use , Animals , Bone Density Conservation Agents/therapeutic use , Coordination Complexes/therapeutic use , Drug Delivery Systems , Humans , Metals/therapeutic use
17.
J Pharm Pharm Sci ; 18(4): 344-67, 2015.
Article in English | MEDLINE | ID: mdl-26626241

ABSTRACT

Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol/blood , Phytosterols/pharmacology , Animals , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/isolation & purification , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Atherosclerosis/prevention & control , Humans , Lipids/blood , Phytosterols/chemistry , Phytosterols/isolation & purification , Phytotherapy/methods , Solubility
18.
Drug Dev Ind Pharm ; 41(9): 1425-30, 2015.
Article in English | MEDLINE | ID: mdl-25170660

ABSTRACT

PURPOSE: To evaluate the antifungal activity of amphotericin B (AmB) in a mouse model of systemic candidiasis following administration of a novel oral AmB formulation (iCo-010) that has been pre-exposed to tropical temperatures. METHODS: Amphotericin B (AmB) was prepared as a 5 mg/mL dispersion in a mixture of Peceol, Gelucire 44/14 and VitE-TPGS 2,3 (iCo-010). The formulation was protected from light and incubated in a sealed container at 43 °C for 60 days. Mice infected with Candida albicans were treated with either iCo-010 formulation pre-incubated at 43 °C for 60 days or freshly prepared iCo-010 formulation at doses of 5, 10 and 20 mg/kg once daily for five consecutive days. Single intravenous 5 mg/kg dose of AmBisome® was used as a positive control group. Seven days following the last dose, the kidney, liver, spleen, lung, heart and brain were removed and the number of colony forming units (CFUs) was determined as a measure of tissue fungal load. In addition, the concentration of AmB within each tissue was determined using high performance liquid chromatography (HPLC). RESULTS: There were no significant differences in the reduction of CFUs and the concentration of AmB recovered in all organs at all iCo-010 doses tested between the freshly prepared iCo-010 formulation compared to the formulation that was incubated at 43 °C for 60 days. CONCLUSIONS: A novel oral AmB formulation, iCo-010, incubated at 43 °C for 60 days to simulate the exposure of the formulation to tropical temperatures remained highly effective against murine systemic candidiasis.


Subject(s)
Amphotericin B/administration & dosage , Antifungal Agents/administration & dosage , Candidiasis/drug therapy , Excipients/chemistry , Administration, Oral , Amphotericin B/chemistry , Amphotericin B/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Chromatography, High Pressure Liquid , Colony Count, Microbial , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Stability , Drug Storage , Female , Mice , Mice, Inbred BALB C , Temperature , Tissue Distribution , Tropical Climate
19.
Lipids Health Dis ; 12: 158, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24164705

ABSTRACT

OBJECTIVE: An oral lipid based formulation that exhibits tropical stability (iCo-010) was developed to enhance the absorption of orally administered amphotericin B (AmB). iCo-010 has previously shown high efficacy in an acute model of systemic candidiasis in rats, directing the focus of this study to be its efficacy in a chronic model of systemic candidiasis in mice. METHODS: Mice were infected with 0.6 to 1×108 CFUs of Candida albicans ATCC 18804 strain by tail vein injection and were left for three days to develop the infection after which time treatment was initiated. The infected animals were assigned to the following treatment groups: no treatment (control) or iCo-010 at 5, 10 and 20 mg/kg administered by oral gavage once daily (QD) for 5 consecutive days. The animals were sacrificed 7 days after the last dose and the concentration of AmB and the fungal burden were assessed within the liver, kidneys, heart, lungs, spleen and brain. RESULTS: Although the infection was relatively low (~ 60-100 CFUs/ 1 ml tissue homogenate) in the liver, lungs and heart, the infection level was very high (70 000 CFUs / 1 ml tissue homogenate) in the kidney tissues for the control group. The highest concentrations of AmB were recovered in the kidneys and the spleen. The fungal burden in the tissues was lowered by 69-96% in the treatment groups when compared to the control group. CONCLUSION: Oral iCo-010 is an effective treatment of systemic candidiasis in the mouse model.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candidiasis/drug therapy , Administration, Oral , Amphotericin B/chemistry , Animals , Candida albicans/growth & development , Candidiasis/microbiology , Colony Count, Microbial , Dose-Response Relationship, Drug , Drug Compounding , Heart/drug effects , Heart/microbiology , Kidney/drug effects , Kidney/microbiology , Liver/drug effects , Liver/microbiology , Lung/drug effects , Lung/microbiology , Mice , Mice, Inbred BALB C , Oleic Acids/chemistry , Organ Specificity , Polyethylene Glycols/chemistry , Spleen/drug effects , Spleen/microbiology , Treatment Outcome
20.
Drug Dev Ind Pharm ; 39(9): 1277-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22989082

ABSTRACT

The objective of this study was to assess the pharmacokinetics and tissue distribution of amphotericin B (AmB) in rats following oral administration of three lipid-based formulations (iCo-009, iCo-010 and iCo-011). The lipid-based formulations were administered to rats at a dose of 10 mg/kg and blood samples were withdrawn at predose, 1, 2, 4, 6, 8, 10, 12, 24, 48 and 72 h, after which the animals were sacrificed and the body organs were collected for AmB quantification using a validated HPLC method. Plasma pharmacokinetics parameters were determined using non-compartmental analysis. The disappearance of AmB from plasma was the slowest following the administration of iCo-010 with MRT of 63 h followed by iCo-009 then iCo-011 (36 and 27 h). The AUC(0-24h) of iCo-009 and iCo-010 was 1.5-2-fold higher than that of iCo-011. The kidney exposure was comparable between iCo-009 and iCo-010 and was higher than that of iCo-011. The lung exposure was the highest following iCo-010 administration as compared to that of iCo-009. The distribution of AmB from plasma to tissues resulted in a high accumulation of AmB overtime with slow back-distribution to plasma. The pharmacokinetics profiles varied among the three formulations, despite the similarity in lipid composition between iCo-010 and iCo-011 and the presence of Peceol® as a common component in the formulations. The administration of oral iCo-010 could lead to higher steady state concentrations in the tissues after multiple dosing, which could lead to enhanced eradication of tissue borne fungal and parasitic infections.


Subject(s)
Amphotericin B/administration & dosage , Anti-Infective Agents/administration & dosage , Drug Delivery Systems , Excipients/chemistry , Lipids/chemistry , Administration, Oral , Amphotericin B/chemistry , Amphotericin B/metabolism , Amphotericin B/pharmacokinetics , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Drug Compounding , Kidney/metabolism , Lung/metabolism , Male , Oleic Acids/chemistry , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Tissue Distribution , Vitamin E/analogs & derivatives , Vitamin E/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...