Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Genet ; 63(1): 15-33, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34491554

ABSTRACT

Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions - quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale - was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from 'Hewo' × 'Magnat' F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.


Subject(s)
Quantitative Trait Loci , Triticale , Freezing , Phenotype , Seasons , Triticale/genetics
2.
Commun Integr Biol ; 12(1): 96-111, 2019.
Article in English | MEDLINE | ID: mdl-31308874

ABSTRACT

Knowledge on the reproductive biology of cassava, relevant to breeders and molecular geneticists, is still limited. Therefore, different studies were carried out to determine the duration of stigma receptivity and the rate of pollen tube growth. Inflorescences were covered for up to 3 days after the first opening of the bracts (e.g. anthesis day) to prevent open pollination. Results indicate that fruit and seed set are drastically reduced when flowers were covered for 2 or 3 days. However, fruits and seeds were obtained even from flowers that had been covered for 3 days after anthesis, although at low frequency. The rate of pollen tube growth was assessed in many combinations of female and male progenitors crossed through controlled pollinations and collecting the pistils at varying hours after pollination (HAP). Pollen tube growth is fast during the first 6 HAP reaching the tip of the nucellar beak. The growth slows down thereafter, taking 10 additional hours to reach the end of the beak. The growth of pollen tubes slows down even further until they enter the embryo sac. Only 10% of samples showed pollen tubes entering the embryo sac between 48 and 66 HAP. Although several tubes may reach the nucellar beak, only one was observed entering the embryo sac. Results, across the different experiments, were highly variable suggesting that the timeline of fertilization is influenced both by genotypic and environmental factors as well as the manual manipulation of inflorescences and cyathia.

SELECTION OF CITATIONS
SEARCH DETAIL
...