Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1108027, 2023.
Article in English | MEDLINE | ID: mdl-36968370

ABSTRACT

The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.

2.
Methods Mol Biol ; 2122: 127-139, 2020.
Article in English | MEDLINE | ID: mdl-31975300

ABSTRACT

Transcriptomic studies have proven powerful and effective as a tool to study the molecular underpinnings of plant development. Still, it remains challenging to disentangle cell- or tissue-specific transcriptomes in complex structures like the plant seed. In particular, the embryo of flowering plants is embedded in the endosperm, a nurturing tissue, which, in turn, is enclosed by the maternal seed coat. Here, we describe laser-assisted microdissection (LAM) to isolate highly pure embryo tissue from whole seeds. This technique is applicable to virtually any plant seed, and we illustrate the use of LAM to isolate embryos from species of the Boechera and Solanum genera. LAM is a tool that will greatly help to increase the repertoires of tissue-specific transcriptomes, including those of embryos and parts thereof, in nonmodel plants.


Subject(s)
Brassicaceae/genetics , Gene Expression Profiling/methods , Laser Capture Microdissection/methods , Seeds/genetics , Solanum/genetics , Brassicaceae/embryology , Brassicaceae/ultrastructure , Gene Expression Regulation, Plant , Genes, Plant , Microscopy/methods , Seeds/embryology , Seeds/ultrastructure , Solanum/embryology , Solanum/ultrastructure , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...