Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cells ; 12(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37681862

ABSTRACT

Immunoglobulin (IgG) Fc glycosylation has been shown to be important for the biological activity of antibodies. Fc sialylation is important for the anti-inflammatory activity of IgGs. However, evaluating the structure-activity relationship (SAR) of antibody Fc glycosylation has been hindered using simplified in vitro models in which antibodies are often displayed in monomeric forms. Presenting antibodies in monomeric forms may not accurately replicate the natural environment of the antibodies when binding their antigen in vivo. To address these limitations, we used different Fc-containing molecules, displaying their Fc domains in monovalent and multivalent fashion. Given the inhibitory role of Fc gamma receptor IIb (FcγRIIb) in autoimmune and inflammatory diseases, we focused on evaluating the impact of Fc sialylation on the activation of FcγRIIb. We report for the first time that in human cellular systems, sialic acid mediates the induction of FcγRIIb phosphorylation by IgG-Fc when the IgG-Fc is displayed in a multivalent fashion. This effect was observed with different types of therapeutic agents such as sialylated anti-TNFα antibodies, sialylated IVIg and sialylated recombinant multivalent Fc products. These studies represent the first report of the specific effects of Fc sialylation on FcγRIIb signaling on human immune cells and may help in the characterization of the anti-inflammatory activity of Fc-containing therapeutic candidates.


Subject(s)
Antibodies , Environment , Humans , Glycosylation , Immunoglobulins, Intravenous/pharmacology
2.
Nature ; 582(7811): 265-270, 2020 06.
Article in English | MEDLINE | ID: mdl-32499653

ABSTRACT

Approximately one-third of the world's population suffers from allergies1. Exposure to allergens crosslinks immunoglobulin E (IgE) antibodies that are bound to mast cells and basophils, triggering the release of inflammatory mediators, including histamine2. Although IgE is absolutely required for allergies, it is not understood why total and allergen-specific IgE concentrations do not reproducibly correlate with allergic disease3-5. It is well-established that glycosylation of IgG dictates its effector function and has disease-specific patterns. However, whether IgE glycans differ in disease states or affect biological activity is completely unknown6. Here we perform an unbiased examination of glycosylation patterns of total IgE from individuals with a peanut allergy and from non-atopic individuals without allergies. Our analysis reveals an increase in sialic acid content on total IgE from individuals with a peanut allergy compared with non-atopic individuals. Removal of sialic acid from IgE attenuates effector-cell degranulation and anaphylaxis in several functional models of allergic disease. Therapeutic interventions-including removing sialic acid from cell-bound IgE with a neuraminidase enzyme targeted towards the IgE receptor FcεRI, and administering asialylated IgE-markedly reduce anaphylaxis. Together, these results establish IgE glycosylation, and specifically sialylation, as an important regulator of allergic disease.


Subject(s)
Immunoglobulin E/chemistry , Immunoglobulin E/immunology , N-Acetylneuraminic Acid/analysis , Peanut Hypersensitivity/immunology , Peanut Hypersensitivity/pathology , Adolescent , Adult , Aged , Allergens/immunology , Anaphylaxis/immunology , Animals , Case-Control Studies , Cell Degranulation/immunology , Child , Child, Preschool , Female , Glycosylation , Humans , Immunoglobulin E/adverse effects , Immunoglobulin E/pharmacology , Infant , Infant, Newborn , Male , Mice , Middle Aged , Models, Immunological , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Receptors, IgE/metabolism , Young Adult
3.
Arthritis Res Ther ; 21(1): 216, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31647025

ABSTRACT

BACKGROUND: The goal of this study is to use comprehensive molecular profiling to characterize clinical response to anti-TNF therapy in a real-world setting and identify reproducible markers differentiating good responders and non-responders in rheumatoid arthritis (RA). METHODS: Whole-blood mRNA, plasma proteins, and glycopeptides were measured in two cohorts of biologic-naïve RA patients (n = 40 and n = 36) from the Corrona CERTAIN (Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory coNditions) registry at baseline and after 3 months of anti-TNF treatment. Response to treatment was categorized by EULAR criteria. A cell type-specific data analysis was conducted to evaluate the involvement of the most common immune cell sub-populations. Findings concordant between the two cohorts were further assessed for reproducibility using selected NCBI-GEO datasets and clinical laboratory measurements available in the CERTAIN database. RESULTS: A treatment-related signature suggesting a reduction in neutrophils, independent of the status of response, was indicated by a high level of correlation (ρ = 0.62; p < 0.01) between the two cohorts. A baseline, response signature of increased innate cell types in responders compared to increased adaptive cell types in non-responders was identified in both cohorts. This result was further assessed by applying the cell type-specific analysis to five other publicly available RA datasets. Evaluation of the neutrophil-to-lymphocyte ratio at baseline in the remaining patients (n = 1962) from the CERTAIN database confirmed the observation (odds ratio of good/moderate response = 1.20 [95% CI = 1.03-1.41, p = 0.02]). CONCLUSION: Differences in innate/adaptive immune cell type composition at baseline may be a major contributor to response to anti-TNF treatment within the first 3 months of therapy.


Subject(s)
Adaptive Immunity/physiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Gene Expression Profiling/methods , Immunity, Innate/physiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adaptive Immunity/drug effects , Adult , Aged , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/immunology , Cohort Studies , Female , Humans , Immunity, Innate/drug effects , Male , Middle Aged , Prospective Studies , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology
4.
Mol Cell Proteomics ; 18(3): 534-545, 2019 03.
Article in English | MEDLINE | ID: mdl-30559323

ABSTRACT

The importance of IgG glycosylation, Fc-gamma receptor (FcγR) single nucleotide polymorphisms and FcγR copy number variations in fine tuning the immune response has been well established. There is a growing appreciation of the importance of glycosylation of FcγRs in modulating the FcγR-IgG interaction based on the association between the glycosylation of recombinant FcγRs and the kinetics and affinity of the FcγR-IgG interaction. Although glycosylation of recombinant FcγRs has been recently characterized, limited knowledge exists on the glycosylation of endogenous human FcγRs. In order to improve the structural understanding of FcγRs expressed on human cells we characterized the site specific glycosylation of native human FcγRIII from neutrophils of 50 healthy donors and from matched plasma for 43 of these individuals. Through this analysis we have confirmed site specific glycosylation patterns previously reported for soluble FcγRIII from a single donor, identified FcγRIIIb specific Asn45 glycosylation and an allelic effect on glycosylation at Asn162 of FcγRIIIb. Identification of FcγRIIIb specific glycosylation allows for assignment of FcγRIIIb alleles and relative copy number of the two alleles where DNA/RNA is not available. Intriguingly the types of structures found to be elevated at Asn162 in the NA2 allele have been shown to destabilize the Fc:FcγRIII interaction resulting in a faster dissociation rate. These differences in glycosylation may in part explain the differential activity reported for the two alleles which have similar in vitro affinity for IgG.


Subject(s)
Asparagine/chemistry , Receptors, IgG/chemistry , Receptors, IgG/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Dosage , Genotype , Glycosylation , Healthy Volunteers , Humans , Immunoglobulin Fc Fragments/metabolism , Mannose/chemistry , Mass Spectrometry , Models, Molecular , Neutrophils/immunology , Plasma/immunology , Receptors, IgG/genetics
5.
Nat Commun ; 9(1): 5058, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498196

ABSTRACT

Vascular-deposited IgG immune complexes promote neutrophil recruitment, but how this process is regulated is still unclear. Here we show that the CD18 integrin Mac-1, in its bent state, interacts with the IgG receptor FcγRIIA in cis to reduce the affinity of FcγRIIA for IgG and inhibit FcγRIIA-mediated neutrophil recruitment under flow. The Mac-1 rs1143679 lupus-risk variant reverses Mac-1 inhibition of FcγRIIA, as does a Mac-1 ligand and a mutation in Mac-1's ligand binding αI-domain. Sialylated complex glycans on FcγRIIA interact with the αI-domain via divalent cations, and this interaction is required for FcγRIIA inhibition by Mac-1. Human neutrophils deficient in CD18 integrins exhibit augmented FcγRIIA-dependent recruitment to IgG-coated endothelium. In mice, CD18 integrins on neutrophils dampen IgG-mediated neutrophil accumulation in the kidney. In summary, cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 alters the threshold for IgG-mediated neutrophil recruitment. A disruption of this interaction may increase neutrophil influx in autoimmune diseases.


Subject(s)
Macrophage-1 Antigen/metabolism , Neutrophils/metabolism , Receptors, IgG/metabolism , Animals , Basement Membrane/metabolism , Endothelium/metabolism , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/metabolism , Jurkat Cells/metabolism , Macrophage-1 Antigen/chemistry , Male , Mice , Nephritis/metabolism , Protein Structure, Secondary , Receptors, IgG/chemistry
6.
PLoS One ; 12(7): e0181251, 2017.
Article in English | MEDLINE | ID: mdl-28759653

ABSTRACT

Intravenous immunoglobulin (IVIg) is a complex mixture drug comprising diverse immunoglobulins and non-IgG proteins purified from the plasma of thousands of healthy donors. Approved IVIg products on the market differ regarding source of plasma, isolation process, and formulation. These products are used widely, and often interchangeably, for the treatment of immunodeficiency and autoimmune and inflammatory diseases, but their mechanisms of action in different indications are not well understood. A primary limitation to understanding the therapeutic relevance of specific components within IVIg has been the limited resolution of analytics historically implemented to characterize its complex mixture. In this study, high-resolution analytics were applied to better understand the composition of IVIg and product variations. We characterized three approved IVIg products: Gammagard®, Privigen®, and Octagam®. Differences in the distribution of molecular weight species, IgG sequence variants, isoforms, glycoforms, and the repertoire of previously reported antibody specificities were identified. We also compared the effect of aging on these products to identify changes in size distribution and posttranslational modifications. This type of characterization may provide insights into the specific factors and components of IVIg that may influence its activity and ultimately lead to optimization of IVIg products for use in autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Immunoglobulin G/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Immunologic Deficiency Syndromes/drug therapy , Aging , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry
7.
Sci Transl Med ; 8(365): 365ra158, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27856797

ABSTRACT

Autoantibody immune complex (IC) activation of Fcγ receptors (FcγRs) is a common pathogenic hallmark of multiple autoimmune diseases. Given that the IC structural features that elicit FcγR activation are poorly understood and the FcγR system is highly complex, few therapeutics can directly block these processes without inadvertently activating the FcγR system. To address these issues, the structure activity relationships of an engineered panel of multivalent Fc constructs were evaluated using sensitive FcγR binding and signaling cellular assays. These studies identified an Fc valency with avid binding to FcγRs but without activation of immune cell effector functions. These observations directed the design of a potent trivalent immunoglobulin G-Fc molecule that broadly inhibited IC-driven processes in a variety of immune cells expressing FcγRs. The Fc trimer, Fc3Y, was highly efficacious in three different animal models of autoimmune diseases. This recombinant molecule may represent an effective therapeutic candidate for FcγR-mediated autoimmune diseases.


Subject(s)
Antigen-Antibody Complex/immunology , Autoimmune Diseases/therapy , Immune Complex Diseases/therapy , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Arthritis/immunology , Arthritis/therapy , Arthritis, Experimental/immunology , Arthritis, Experimental/therapy , Autoantibodies/immunology , Autoimmune Diseases/immunology , Cell Line , Epidermolysis Bullosa Acquisita/immunology , Epidermolysis Bullosa Acquisita/therapy , Humans , Immune Complex Diseases/immunology , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology , Phagocytes , Platelet Activation , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/therapy , Signal Transduction
8.
Anal Bioanal Chem ; 407(23): 7055-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26231686

ABSTRACT

With the rapid growth of recombinant monoclonal antibodies and intravenous immunoglobulin (IVIg) medicines, the understanding of human immunoglobulin G (IgG) subclasses becomes more necessary. It is essential to develop effective techniques and methodologies which have the capability for deep characterization. We have created an approach by applying LC and liquid chromatography-mass spectrometry (LC-MS) methods to thoroughly characterize Fc/2 sequence variants for human IgG subclasses in complex samples. Identification and relative quantitation of sequence variants have been provided. Unique glycan information of each IgG subclass can also be obtained by this method. The approach was based on high-resolution HPLC separation followed by intact LC-MS. Peptide mapping was performed following sample fractionation to identify sequence variants. IVIg, a purified IgG mixture from pooled human plasma of thousands of blood donors, was selected as an example for method development. The amino acid sequence variants in IgG Fc/2 constant region were fully investigated for all subclasses by these methods. A total of 19 sequence variants were identified, and their relative abundances were quantitated, which included six variants in IgG1, eight in IgG2, three in IgG3, and two in IgG4. Unique glycan data was also provided for each Fc subclass, which is particularly important for IgG3; glycans from this subclass have only previously been reported together with IgG2 or IgG4. The method described in this paper has been proved to be an effective approach for deep characterization of IgG Fc/2 for complex samples. The findings of IVIg from these studies are also valuable for better understanding of human IgGs.


Subject(s)
Chromatography, Liquid/methods , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Mass Spectrometry/methods , Amino Acid Sequence , Complex Mixtures/blood , Complex Mixtures/chemistry , Genetic Variation , Humans , Immunoglobulin Fc Fragments/blood , Immunoglobulin G/blood , Molecular Sequence Data , Peptide Mapping/methods , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling
9.
J Biomol Screen ; 20(6): 768-78, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25851037

ABSTRACT

Fidelity of glycan structures is a key requirement for biotherapeutics, with carbohydrates playing an important role for therapeutic efficacy. Comprehensive glycan profiling techniques such as liquid chromatography (LC) and mass spectrometry (MS), while providing detailed description of glycan structures, require glycan cleavage, labeling, and paradigms to deconvolute the considerable data sets they generate. On the other hand, lectins as probes on microarrays have recently been used in orthogonal approaches for in situ glycoprofiling but require analyte labeling to take advantage of the capabilities of automated microarray readers and data analysis they afford. Herein, we describe a lectin-based microtiter assay (lectin-enzyme-linked immunosorbent assay [ELISA]) to quantify terminal glycan moieties, applicable to in vitro and in-cell glycan-engineered Fc proteins as well as intact IgGs from intravenous immunoglobulin (IVIG), a blood product containing pooled polyvalent IgG antibodies extracted from plasma from healthy human donors. We corroborate our findings with industry-standard LC-MS profiling. This "customizable" ELISA juxtaposes readouts from multiple lectins, focusing on a subset of glycoforms, and provides the ability to discern single- versus dual-arm glycosylation while defining levels of epitopes at sensitivities comparable to MS. Extendable to other biologics, this ELISA can be used stand-alone or complementary to MS for quantitative glycan analysis.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Glycosylation , Lectins/metabolism , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Immunoglobulins, Intravenous/metabolism , Mass Spectrometry , Polysaccharides/metabolism
10.
J Exp Med ; 212(4): 457-67, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25824821

ABSTRACT

Immunoglobulin ε (IgE) antibodies are the primary mediators of allergic diseases, which affect more than 1 in 10 individuals worldwide. IgE specific for innocuous environmental antigens, or allergens, binds and sensitizes tissue-resident mast cells expressing the high-affinity IgE receptor, FcεRI. Subsequent allergen exposure cross-links mast cell-bound IgE, resulting in the release of inflammatory mediators and initiation of the allergic cascade. It is well established that precise glycosylation patterns exert profound effects on the biological activity of IgG. However, the contribution of glycosylation to IgE biology is less clear. Here, we demonstrate an absolute requirement for IgE glycosylation in allergic reactions. The obligatory glycan was mapped to a single N-linked oligomannose structure in the constant domain 3 (Cε3) of IgE, at asparagine-394 (N394) in human IgE and N384 in mouse. Genetic disruption of the site or enzymatic removal of the oligomannose glycan altered IgE secondary structure and abrogated IgE binding to FcεRI, rendering IgE incapable of eliciting mast cell degranulation, thereby preventing anaphylaxis. These results underscore an unappreciated and essential requirement of glycosylation in IgE biology.


Subject(s)
Anaphylaxis/immunology , Cell Degranulation/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Polysaccharides/immunology , Receptors, IgE/immunology , Anaphylaxis/genetics , Anaphylaxis/pathology , Anaphylaxis/prevention & control , Animals , Cell Degranulation/genetics , Glycosylation , Humans , Immunoglobulin Constant Regions/genetics , Immunoglobulin Constant Regions/immunology , Immunoglobulin E/genetics , Inflammation Mediators , Mast Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Polysaccharides/genetics , Receptors, IgE/genetics
11.
Proc Natl Acad Sci U S A ; 112(11): E1297-306, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733881

ABSTRACT

Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc-sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Drug Design , Immunoglobulins, Intravenous/therapeutic use , N-Acetylneuraminic Acid/metabolism , Receptors, Fc/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Blister/complications , Blister/drug therapy , Blister/pathology , Disease Models, Animal , Epidermolysis Bullosa Acquisita/complications , Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/pathology , Glycosylation/drug effects , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulins, Intravenous/pharmacokinetics , Immunoglobulins, Intravenous/pharmacology , Mice , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Tissue Distribution/drug effects , Treatment Outcome
13.
Anal Chem ; 81(21): 8900-7, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19817480

ABSTRACT

With the rapid growth of complex heterogeneous biological molecules, effective techniques that are capable of rapid characterization of biologics are essential to ensure the desired product characteristics. To address this need, we have developed a method for analysis of intact glycoproteins based on high-resolution capillary electrophoretic separation coupled to an LTQ-FT mass spectrometer. We evaluated the performance of this method on the alpha subunit of mouse cell line-derived recombinant human chorionic gonadotrophin (r-alpha hCG), a protein that is glycosylated at two sites and is part of the clinically relevant gonadotrophin family. Analysis of r-alpha hCG, using capillary electrophoresis (CE) with a separation time under 20 min, resulted in the identification of over 60 different glycoforms with up to nine sialic acids. High-resolution CE-Fourier transform mass spectrometry (FT-MS) allowed separation and analysis of not only intact glycoforms with different numbers of sialic acids but also intact glycoforms that differed by the number and extent of neutral monosaccharides. The high mass resolution of the FT-MS enabled a limited mass range to be targeted for the examination of the protein glycoforms, simplifying the analysis without sacrificing accuracy. In addition, the limited mass range resulted in a fast scan speed that enhanced the reproducibility of the relative quantitation of individual glycoforms. The intact glycoprotein analysis was complemented with the analysis of the tryptic glycopeptides and glycans of r-alpha hCG to enable the assignment of glycan structures to individual sites, resulting in a detailed characterization of the protein. Samples of r-alpha hCG obtained from a CHO cell line were also analyzed and briefly shown to be significantly different from the murine cell line product. Taken together, the results suggest that the CE coupled to high-resolution FT-MS can be one of the effective tools for in-process monitoring as well as for final product characterization.


Subject(s)
Electrophoresis, Capillary/methods , Glycoprotein Hormones, alpha Subunit/analysis , Mass Spectrometry/methods , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Fourier Analysis , Glycopeptides/analysis , Glycoprotein Hormones, alpha Subunit/metabolism , Humans , Mice , Polysaccharides/analysis , Recombinant Proteins/analysis , Recombinant Proteins/metabolism , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...