Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuromuscul Dis ; 4(3): 237-249, 2017.
Article in English | MEDLINE | ID: mdl-28598854

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a neurodegenerative autosomal recessive disorder characterized by the loss of α-motor neurons. A variety of molecular pathways are being investigated to elevate SMN protein expression in SMA models and in the clinic. One of these approaches involves stabilizing the SMNΔ7 protein by inducing translational read-through. Previous studies have demonstrated that functionality and stability are partially restored to the otherwise unstable SMNΔ7 by the addition of non-specific C-terminal peptide sequences, or by inducing a similar molecular event through the use of read-through inducing compounds such as aminoglycosides. OBJECTIVE: The objective was to determine the efficacy of the macrolide Azithromycin (AZM), an FDA approved read-through-inducing compound, in the well-established severe mouse model of SMA. METHODS: Initially, dosing regimen following ICV administrations of AZM at different post-natal days and concentrations was determined by their impact on SMN levels in disease-relevant tissues. Selected dose was then tested for phenotypic parameters changes as compared to the appropriate controls and in conjugation to another therapy. RESULTS: AZM increases SMN protein in disease relevant tissues, however, this did not translate into similar improvements in the SMA phenotype in a severe mouse model of SMA. Co-administration of AZM and a previously developed antisense oligonucleotide that increases SMN2 splicing, resulted in an improvement in the SMA phenotype beyond either AZM or ASO alone, including a highly significant extension in survival with improvement in body weight and movement. CONCLUSIONS: It is important to explore various approaches for SMA therapeutics, hence compounds that specifically induce SMNΔ7 read-through, without having prohibitive toxicity, may provide an alternative platform for a combinatorial treatment. Here we established that AZM activity at a low dose can increase SMN protein in disease-relevant animal model and can impact disease severity.


Subject(s)
Azithromycin/pharmacology , Brain/drug effects , Muscular Atrophy, Spinal/pathology , Neuroprotective Agents/pharmacology , Animals , Brain/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Oligonucleotides, Antisense/pharmacology , Spinal Cord/drug effects , Spinal Cord/pathology
2.
Mol Ther ; 24(9): 1592-601, 2016 09.
Article in English | MEDLINE | ID: mdl-27401142

ABSTRACT

Loss of Survival Motor Neuron-1 (SMN1) causes Spinal Muscular Atrophy, a devastating neurodegenerative disease. SMN2 is a nearly identical copy gene; however SMN2 cannot prevent disease development in the absence of SMN1 since the majority of SMN2-derived transcripts are alternatively spliced, encoding a truncated, unstable protein lacking exon 7. Nevertheless, SMN2 retains the ability to produce low levels of functional protein. Previously we have described a splice-switching Morpholino antisense oligonucleotide (ASO) sequence that targets a potent intronic repressor, Element1 (E1), located upstream of SMN2 exon 7. In this study, we have assessed a novel panel of Morpholino ASOs with the goal of optimizing E1 ASO activity. Screening for efficacy in the SMNΔ7 mouse model, a single ASO variant was more active in vivo compared with the original E1(MO)-ASO. Sequence variant eleven (E1(MOv11)) consistently showed greater efficacy by increasing the lifespan of severe Spinal Muscular Atrophy mice after a single intracerebroventricular injection in the central nervous system, exhibited a strong dose-response across an order of magnitude, and demonstrated excellent target engagement by partially reversing the pathogenic SMN2 splicing event. We conclude that Morpholino modified ASOs are effective in modifying SMN2 splicing and have the potential for future Spinal Muscular Atrophy clinical applications.


Subject(s)
Introns , Morpholinos/genetics , Muscular Atrophy, Spinal/genetics , Response Elements , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Targeting , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Knockout , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/mortality , Mutation , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...