Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Nano ; 19(1): 5, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175319

ABSTRACT

Etravirine (ERVN) is a potential NNRTI (non-nucleoside reverse transcriptase inhibitor) in treating HIV infection. It possesses extremely low oral bioavailability. The present research aims to optimize the formulation and characterization of TPGS-enriched ERVN-loaded lipid-based nanocarriers (NLCs) for HIV-infected patients. The formulation, ERVN-TPGS-NLCs, was optimized by central composite rotational design using a modified-solvent emulsification process. Various characterization parameters of NLCs were evaluated, including globule size of 121.56 ± 2.174 nm, PDI of 0.172 ± 0.042, the zeta potential of - 7.32 ± 0.021 mV, %EE of 94.42 ± 8.65% of ERVN and %DL was 8.94 ± 0.759% of ERVN and spherical shape was revealed by TEM. PXRD was also performed to identify the crystallinity of the sample. In-vitro drug release showed % a cumulative drug release of 83.72 ± 8.35% at pH 1.2 and 90.61 ± 9.11% at pH 6.8, respectively, whereas the % cumulative drug release from drug suspension (ERVN-S) was found to be 21.13 ± 2.01% at pH 1.2 and 24.84 ± 2.51 at pH 6.8 at the end of 48 h. Further, the intestinal permeation study and confocal microscope showed approximately three-fold and two-fold increased permeation in ERVN-TPGS-NLCs and ERVN-NLCs across the gut sac compared to ERVN-S. Hemolysis compatibility and lipolysis studies were performed to predict the in-vivo fate of the formulation. The pharmacokinetic study revealed a 3.13-fold increment in the relative bioavailability, which agrees with the ex-vivo studies, and lymphatic uptake was validated by using cycloheximide along with designed formulation, which showed the impact of lymphatic uptake in AUC. This study ensures that ERVN-TPGS-NLCs take lymphatic uptake to minimize the first-pass metabolism followed by improved oral bioavailability of ERVN. Thus, the enhanced bioavailability of ERVN can reduce the high dose of ERVN to minimize the adverse effects related to dose-related burden.

2.
3 Biotech ; 13(5): 151, 2023 May.
Article in English | MEDLINE | ID: mdl-37131965

ABSTRACT

Antibiotics and immunotherapies possess unavoidable adverse effects that hinder sepsis management. Herbal drugs have demonstrated potential immunomodulatory properties vital for sepsis treatment. We hypothesized in the present study that the use of Carica papaya leaves extract had the potential to improve survival and modulate immune cytokine release during sepsis. Animals were subjected to cecal ligation and puncture (CLP) to induce sepsis. Septic rats divided into 10 groups received ethanol extract of C. papaya leaves (50 and 100 mg/kg), imipenem (120 mg/kg) and cyclophosphamide (CP, 10 mg/kg). To investigate the immunomodulatory potentials of EE, cytokine levels like interleukin (IL-6), tumor necrosis factor (TNF-α), and IL-10 along with hematological and biochemical parameters were analyzed. Our results exhibited improved survival rates concerning ethanol extract treatment alone and in combination with imipenem and CP (100%) as compared to the CLP group (33.3%) on day 7 post-surgery. The combination treatment of ethanol extract with imipenem and CP significantly (P < 0.001) ameliorated cytokine levels and hematological and biochemical parameters in septic rats. A histopathological examination suggested improved liver and kidney tissue condition after combination treatment as compared to the CLP group. Therefore, it was concluded that combination therapy of extract with imipenem and CP improved survival rates and marked immunomodulatory potential in septic rats compared to monotherapy. The findings suggested the use of a mixture of these drugs in clinical settings to treat sepsis.

3.
Clin Exp Pharmacol Physiol ; 49(11): 1232-1245, 2022 11.
Article in English | MEDLINE | ID: mdl-35866379

ABSTRACT

Cardiovascular diseases are the most disturbing problems throughout the world. The side effects of existing drugs are continuously compelling the scientist to look for better options in terms of safety, efficacy and cost-effectiveness. Our study is also a move in this direction. We have chosen D-pinitol to see its cardioprotective role in isoproterenol-induced myocardial infarction in Swiss albino mice. Grouping was made by dividing mice into eight groups (n = 6). Group I, control; Group II, isoproterenol (ISO) (150 mg/kg, i.p.); Group III, D-pinitol (PIN) (25 mg); Group IV, PIN (50 mg); Group V, PIN (100 mg) per kg per oral, respectively with ISO; Group VI, PIN per se (100 mg D-pinitol only); Group VII, Propranolol (PRO) (20 mg/kg/oral) with ISO; and Group VIII, PRO per se (20 mg/kg, p.o.). After 24 h of the last dose, the blood sample was collected for biochemical parameters, then mice were, killed through cervical dislocation under anaesthesia and cardiac tissue was collected for biochemical, histopathological and ultrastructural evaluation. Administration of ISO in mice altered the level of antioxidant markers, cardiac injury markers and inflammatory markers, which were significantly restored towards normal by D-pinitol at the dose of 50 and 100 mg. 25 mg of D-pinitol dosage, did not produce significant cardio protection. The histopathological and ultrastructural analysis further confirmed these findings. Our study showed that D-pinitol significantly protected myocardial damage which was induced by ISO and reverted oxidative stress and inflammation considerably.


Subject(s)
Antioxidants , Myocardial Infarction , Animals , Antioxidants/metabolism , Arrhythmias, Cardiac/drug therapy , Cardiotonic Agents/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inositol/analogs & derivatives , Isoproterenol/toxicity , Mice , Myocardial Infarction/chemically induced , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Myocardium/metabolism , Oxidative Stress , Propranolol/adverse effects , Propranolol/metabolism , Rats , Rats, Wistar
4.
Drug Deliv ; 29(1): 1492-1511, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35543534

ABSTRACT

Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-ß, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.


Subject(s)
MicroRNAs , Neurotoxicity Syndromes , Drug Delivery Systems , Hippocampus , Humans , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Phytochemicals/pharmacology , Quality of Life
5.
Curr Top Med Chem ; 21(29): 2647-2670, 2021.
Article in English | MEDLINE | ID: mdl-34392821

ABSTRACT

Cyclophosphamide (CP) is an extensively used anticancer drug, but its cardiotoxic manifestation is a major concern for its widespread clinical use. The observed cardiotoxic attributes have been reported at the therapeutic dose and often result into a high mortality rate and poor clinical outcome. Fall in the level of antioxidant enzymes catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) generation of reactive oxygen species (ROS), inflammatory cytokines nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL- 1ß), apoptotic proteins (caspases) and direct damage to myocardial tissue (histological and ultrastructural damage) are some of the reported manifestations of cardiotoxicity. The observed clinical attributes of CP-induced cardiotoxicity are myocarditis, hemorrhage, thrombosis, myocardial infarction (MI), reduced ejection fraction, altered electrocardiogram (ECG) reading and heart failure. However, unlike Daxarazasone (an adjuvant to reduce doxorubicin-induced cardiotoxicity), no approved adjuvant is available to mitigate CPinduced cardiotoxicity. Thus, various natural bioactives have been explored for the possible cardioprotective effect against CP-induced cardiotoxicity. In the current manuscript, we have discussed the clinical and preclinical aspects of CP-induced cardiotoxicity, its clinically used combination with other anticancer drugs, and the available therapeutic regimen to mitigate this cardiotoxicity. Further, we discussed the limitations of available synthetic drugs used as an adjuvant and discussed various natural bioactive and their experimental details. This manuscript's overall goal is to throw light on CP-induced cardiotoxicity and summarize all the experimental data so that researchers working in this field may scientifically get up-to-date information in one place.


Subject(s)
Biological Products/pharmacology , Biological Products/therapeutic use , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cyclophosphamide/adverse effects , Antioxidants/metabolism , Apoptosis , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Humans , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...