Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 92: 101739, 2020 02.
Article in English | MEDLINE | ID: mdl-32113595

ABSTRACT

Massive cyanobacteria blooms occur almost every summer in the Baltic Sea but the capability to quantitatively predict their extent and intensity is poorly developed. Here we analyse statistical relationships between multi-decadal satellite-derived time series of the frequency of cyanobacteria surface accumulations (FCA) in the central Baltic Sea Proper and a suite of environmental variables. Over the decadal scale (∼5-20 years) FCA was highly correlated (R2 ∼ 0.69) with a set of biogeochemical variables related to the amount of phosphorus and hypoxia in bottom layers. Water temperature in the surface layer was also positively correlated with FCA at the decadal scale. In contrast, the inter-annual variations in FCA had no correlation with the biogeochemical variables. Instead, significant correlations were found with the solar shortwave direct flux in July and the sea-surface temperature, also in July. It thus appears that it is not possible to predict inter-annual fluctuations in cyanobacteria blooms from water chemistry. Moreover, environmental variables could only explain about 45% of the inter-annual variability in FCA, probably because year-to-year variations in FCA are significantly influenced by biological interactions.


Subject(s)
Cyanobacteria , Baltic States , Phosphorus/analysis , Seasons
2.
Harmful Algae ; 91: 101685, 2020 01.
Article in English | MEDLINE | ID: mdl-32057344

ABSTRACT

Almost every summer, dense blooms of filamentous cyanobacteria are formed in the Baltic Sea. These blooms may cause problems for tourism and ecosystem services, where surface accumulations and beach fouling are commonly occurring. Future changes in environmental drivers, including climate change and other anthropogenic disturbances, may further enhance these problems. By compiling monitoring data from countries adjacent to the Baltic Sea, we present spatial and temporal genus-specific distribution of diazotrophic filamentous cyanobacteria (Nostocales) during four decades (1979-2017). While the summer surface salinity decreased with a half up to one unit, the surface temperature in July-August increased with 2-3 °C in most sub-basins of the Baltic Sea, during the time period. The biovolumes of the toxic Nodularia spumigena did not change in any of the sub-basins during the period. On the other hand, the biovolume of the non-toxic Aphanizomenon sp. and the potentially toxic Dolichospermum spp. increased in the northern parts of the Baltic Sea, along with the decreased salinity and elevated temperatures, but Aphanizomenon sp. decreased in the southern parts despite decreased salinity and increased temperatures. These contradictory changes in biovolume of Aphanizomenon sp. between the northern and southern parts of the Baltic Sea may be due to basin-specific effects of the changed environmental conditions, or can be related to local adaptation by sub-populations of the genera. Overall, this comprehensive dataset presents insights to genus-specific bloom dynamics by potentially harmful diazotrophic filamentous cyanobacteria in the Baltic Sea.


Subject(s)
Cyanobacteria , Ecosystem , Baltic States , Nodularia
3.
PLoS One ; 15(1): e0227714, 2020.
Article in English | MEDLINE | ID: mdl-31917814

ABSTRACT

Vitamin B1 (thiamin) deficiency is an issue periodically affecting a wide range of taxa worldwide. In aquatic pelagic systems, thiamin is mainly produced by bacteria and phytoplankton and is transferred to fish and birds via zooplankton, but there is no general consensus on when or why this transfer is disrupted. We focus on the occurrence in salmon (Salmo salar) of a thiamin deficiency syndrome (M74), the incidence of which is highly correlated among populations derived from different spawning rivers. Here, we show that M74 in salmon is associated with certain large-scale abiotic changes in the main common feeding area of salmon in the southern Baltic Sea. Years with high M74 incidence were characterized by stagnant periods with relatively low salinity and phosphate and silicate concentrations but high total nitrogen. Consequently, there were major changes in phytoplankton and zooplankton, with, e.g., increased abundances of Cryptophyceae, Dinophyceae, Diatomophyceae and Euglenophyceae and Acartia spp. during high M74 incidence years. The prey fish communities also had increased stocks of both herring and sprat in these years. Overall, this suggests important changes in the entire food web structure and nutritional pathways in the common feeding period during high M74 incidence years. Previous research has emphasized the importance of the abundance of planktivorous fish for the occurrence of M74. By using this 27-year time series, we expand this analysis to the entire ecosystem and discuss potential mechanisms inducing thiamin deficiency in salmon.


Subject(s)
Animal Nutritional Physiological Phenomena , Ecological Parameter Monitoring/statistics & numerical data , Food Chain , Salmo salar/physiology , Thiamine Deficiency/veterinary , Animals , Ecological Parameter Monitoring/trends , Female , Incidence , Oceans and Seas , Phytoplankton/chemistry , Thiamine/metabolism , Thiamine Deficiency/epidemiology , Thiamine Deficiency/etiology , Zooplankton/chemistry
4.
Glob Chang Biol ; 25(3): 794-810, 2019 03.
Article in English | MEDLINE | ID: mdl-30628151

ABSTRACT

Changes in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N2 -fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous. Here, we use a set of proxies derived from amino acid nitrogen stable isotopes from two mesozooplankton size fractions to identify changes in the nitrogen source and the planktonic food web structure across different microplankton communities. A transition from herbivory to carnivory in mesozooplankton between more eutrophic, near-coastal sites and more oligotrophic, offshore sites was accompanied by an increasing diversity of microplankton communities with aging filamentous cyanobacterial blooms. Our analyses of 124 biotic and abiotic variables using multivariate statistics confirmed salinity as a major driver for the biomass distribution of non-N2 -fixing microplankton species such as dinoflagellates. However, we provide strong evidence that stratification, N2 fixation, and the stage of the cyanobacterial blooms regulated much of the microplankton diversity and the mean trophic position and size of the metabolic nitrogen pool in mesozooplankton. Our empirical, macroscale data set consistently unifies contrasting results of the dominant feeding mode in mesozooplankton during blooms of unpalatable, filamentous, N2 -fixing cyanobacteria by identifying the at times important role of heterotrophic microbial food webs. Thus, carnivory, rather than herbivory, dominates in mesozooplankton during aging and decaying cyanobacterial blooms with hitherto uncharacterized consequences for the biogeochemical functions of mesozooplankton.


Subject(s)
Cyanobacteria/physiology , Eutrophication , Food Chain , Nitrogen Fixation , Plankton/physiology , Biomass , Cyanobacteria/metabolism , Ecosystem , Nitrogen/metabolism , Nitrogen Isotopes/metabolism , Plankton/classification , Plankton/metabolism , Salinity
5.
Environ Sci Technol ; 49(19): 11449-57, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26321575

ABSTRACT

Marine mercury emission plays an important role in the atmospheric mercury budget. It is caused by the transformation of ionic mercury to volatile elemental mercury (Hg(0)) and the subsequent release of the latter from surface waters. In this study, we investigated mercury transformation using three approaches: incubation experiments, statistical analyses of phytoplankton and Hg(0) data, and microbiological determinations. The incubation experiments revealed that (1) biotic-light-dependent transformation accounted for an average of 30% of the total natural transformation, (2) photochemistry also contributed 30%, such that its contribution was less important than previously considered, and (3) low-light production accounted for 40%. Field experiments and the microbiological investigations suggested the cyanobacterial genera Synechococcus and Aphanizomenon as the main transformers of mercury. On the basis of the rough balance of biotic mercury transformation with mercury emission during summer, on average, only a small portion of a few percent of the mixed layer participates in active transformation.


Subject(s)
Aphanizomenon/metabolism , Mercury/analysis , Synechococcus/metabolism , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Light , Mercury/chemistry , Mercury/metabolism , Oceans and Seas , Photochemical Processes , Phytoplankton/chemistry , Phytoplankton/metabolism , Seasons , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
6.
Mar Pollut Bull ; 62(1): 7-20, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20947101

ABSTRACT

Regime shifts in the marine environment have recently received much attention. To date, however, few large-scale meta-analyses have been carried out due to insufficient data coverage and integration between sustained observational datasets because of diverse methodologies used in data collection, recording and archival. Here we review the available data on regime shifts globally, followed by a review of current and planned policies with relevance to regime shifts. We then focus on the North and Baltic Seas, providing examples of existing efforts for data integration in the MarBEF Network of Excellence. Existing gaps in data coverage are identified, and the added value from meta-analyses of multiple datasets demonstrated using examples from the MarBEF integrated data project LargeNet. We discuss whether these efforts are addressing current policy needs and close with recommendations for future integrated data networks to increase our ability to understand, identify and predict recent and future regime shifts.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Environmental Policy/trends , Politics , Conservation of Natural Resources/legislation & jurisprudence , Ecosystem , Environment , Environmental Monitoring/legislation & jurisprudence , Natural Science Disciplines/methods , Natural Science Disciplines/trends , Oceans and Seas
7.
Mar Pollut Bull ; 60(10): 1691-700, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20655073

ABSTRACT

There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.


Subject(s)
Environment , Environmental Monitoring/methods , Introduced Species , Phytoplankton/physiology , Baltic States , Ecosystem , Oceans and Seas , Population Dynamics
8.
Ambio ; 36(2-3): 186-94, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17520933

ABSTRACT

Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.


Subject(s)
Cyanobacteria/growth & development , Ecosystem , Environmental Monitoring , Eutrophication , Nitrogen/metabolism , Phosphorus/metabolism , Seawater/microbiology , Baltic States , Hypoxia/pathology , Nitrogen/analysis , Nitrogen Fixation , Oxygen Consumption , Phosphorus/analysis , Population Dynamics , Risk Management , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...