Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 659784, 2021.
Article in English | MEDLINE | ID: mdl-34025613

ABSTRACT

Roof-harvested rainwater (RHRW) was investigated for the presence of the human pathogenic bacteria Mycobacterium tuberculosis (M. tuberculosis), Yersinia spp. and Listeria monocytogenes (L. monocytogenes). While Yersinia spp. were detected in 92% (n = 25) of the RHRW samples, and L. monocytogenes and M. tuberculosis were detected in 100% (n = 25) of the samples, a significantly higher mean concentration (1.4 × 103 cells/100 mL) was recorded for L. monocytogenes over the sampling period. As the identification of appropriate water quality indicators is crucial to ensure access to safe water sources, correlation of the pathogens to traditional indicator organisms [Escherichia coli (E. coli) and Enterococcus spp.] and microbial source tracking (MST) markers (Bacteroides HF183, adenovirus and Lachnospiraceae) was conducted. A significant positive correlation was then recorded for E. coli versus L. monocytogenes (r = 0.6738; p = 0.000), and Enterococcus spp. versus the Bacteroides HF183 marker (r = 0.4071; p = 0.043), while a significant negative correlation was observed for M. tuberculosis versus the Bacteroides HF183 marker (r = -0.4558; p = 0.022). Quantitative microbial risk assessment indicated that the mean annual risk of infection posed by L. monocytogenes in the RHRW samples exceeded the annual infection risk benchmark limit (1 × 10-4 infections per person per year) for intentional drinking (∼10-4). In comparison, the mean annual risk of infection posed by E. coli was exceeded for intentional drinking (∼10-1), accidental consumption (∼10-3) and cleaning of the home (∼10-3). However, while the risk posed by M. tuberculosis for the two relevant exposure scenarios [garden hosing (∼10-5) and washing laundry by hand (∼10-5)] was below the benchmark limit, the risk posed by adenovirus for garden hosing (∼10-3) and washing laundry by hand (∼10-3) exceeded the benchmark limit. Thus, while the correlation analysis confirms that traditional indicators and MST markers should be used in combination to accurately monitor the pathogen-associated risk linked to the utilisation of RHRW, the integration of QMRA offers a more site-specific approach to monitor and estimate the human health risks associated with the use of RHRW.

2.
World J Microbiol Biotechnol ; 37(5): 85, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33860852

ABSTRACT

Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as "live antibiotics" in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.


Subject(s)
Bdellovibrio/physiology , Wastewater/microbiology , Agriculture , Aquaculture , Biodegradation, Environmental , Food Technology , Probiotics , Veterinary Medicine
3.
Microbiol Res ; 235: 126437, 2020 May.
Article in English | MEDLINE | ID: mdl-32088503

ABSTRACT

The expression of attack phase (AP) and growth phase (GP) genes of Bdellovibrio bacteriovorus (B. bacteriovorus) was compared in the presence of Gram-negative [Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)] and Gram-positive [Enterococcus faecium (E. faecium)] prey, using relative quantitative polymerase chain reaction (relative qPCR) assays. The genes bd0108 (pili retraction/extrusion) and merRNA (massively expressed riboswitch RNA) were highly expressed in the AP cells [3.99- to 6.06-fold (E. coli), 3.91- to 7.05-fold (K. pneumoniae) and 2.91- to 7.30-fold (E. faecium)]. The fliC1 gene (flagella filament) was also expressed at a high level in the AP cells however, after 240 min of co-culture with E. faecium the expression of fliC1 remained low (at 0.759-fold), while in the presence of the Gram-negative prey fliC1 expression increased. Additionally, the GP genes bd0816 (peptidoglycan-modifying enzyme) and groES1 (chaperone protein) were not induced in the presence of E. faecium. However, they were expressed in the early GP and GP of B. bacteriovorus after exposure to the Gram-negative prey. It can thus be concluded that B. bacteriovorus senses the presence of potential prey when exposed to Gram-positive and Gram-negative bacteria, however the GP genes are not induced in co-culture with E. faecium. The results from this study thus indicate that B. bacteriovorus does not actively grow in the presence of E. faecium and the second predatory cue (induces active growth of B. bacteriovorus) is lacking when B. bacteriovorus is co-cultured with the Gram-positive prey.


Subject(s)
Bacterial Proteins/genetics , Bdellovibrio bacteriovorus/genetics , Bdellovibrio bacteriovorus/pathogenicity , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Bdellovibrio bacteriovorus/growth & development , Microbial Interactions
4.
BMC Microbiol ; 19(1): 303, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31870288

ABSTRACT

BACKGROUND: The antimicrobial resistance of clinical, environmental and control strains of the WHO "Priority 1: Critical group" organisms, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa to various classes of antibiotics, colistin and surfactin (biosurfactant) was determined. METHODS: Acinetobacter baumannii was isolated from environmental samples and antibiotic resistance profiling was performed to classify the test organisms [A. baumannii (n = 6), P. aeruginosa (n = 5), E. coli (n = 7) and K. pneumoniae (n = 7)] as multidrug resistant (MDR) or extreme drug resistant (XDR). All the bacterial isolates (n = 25) were screened for colistin resistance and the mobilised colistin resistance (mcr) genes. Biosurfactants produced by Bacillus amyloliquefaciens ST34 were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI-MS). The susceptibility of strains, exhibiting antibiotic and colistin resistance, to the crude surfactin extract (cell-free supernatant) was then determined. RESULTS: Antibiotic resistance profiling classified four A. baumannii (67%), one K. pneumoniae (15%) and one P. aeruginosa (20%) isolate as XDR, with one E. coli (15%) and three K. pneumoniae (43%) strains classified as MDR. Many of the isolates [A. baumannii (25%), E. coli (80%), K. pneumoniae (100%) and P. aeruginosa (100%)] exhibited colistin resistance [minimum inhibitory concentrations (MICs) ≥ 4 mg/L]; however, only one E. coli strain isolated from a clinical environment harboured the mcr-1 gene. UPLC-MS analysis then indicated that the B. amyloliquefaciens ST34 produced C13-16 surfactin analogues, which were identified as Srf1 to Srf5. The crude surfactin extract (10.00 mg/mL) retained antimicrobial activity (100%) against the MDR, XDR and colistin resistant A. baumannii, P. aeruginosa, E. coli and K. pneumoniae strains. CONCLUSION: Clinical, environmental and control strains of A. baumannii, P. aeruginosa, E. coli and K. pneumoniae exhibiting MDR and XDR profiles and colistin resistance, were susceptible to surfactin analogues, confirming that this lipopeptide shows promise for application in clinical settings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Multiple, Bacterial , World Health Organization , Bacteria/classification , Chromatography, Liquid , Colistin/pharmacology , Environmental Microbiology , Genome, Bacterial , Humans , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Peptides, Cyclic/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Tandem Mass Spectrometry
5.
J Environ Qual ; 47(5): 1006-1023, 2018 09.
Article in English | MEDLINE | ID: mdl-30272766

ABSTRACT

and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.


Subject(s)
Cryptosporidium , Giardia , Animals , Humans , Oocysts , Wastewater , Water Quality
6.
Environ Sci Pollut Res Int ; 25(6): 5700-5710, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29230646

ABSTRACT

Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 102 to 3.6 × 104 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 101 to 7.8 × 104 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing associated public health risks.


Subject(s)
Environmental Monitoring/methods , Naegleria fowleri/growth & development , Rain/parasitology , Water Microbiology , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Feces/microbiology , Naegleria fowleri/isolation & purification , Queensland , Rain/microbiology , South Africa , Water Microbiology/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...