Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancers (Basel) ; 10(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200491

ABSTRACT

Side effects of radiation therapy (RT) remain the most challenging issue for pancreatic cancer treatment. Cerium oxide nanoparticles (CONPs) are currently being tested in pre-clinical trials as an adjuvant to sensitize pancreatic cancer cells to RT and protect normal tissues from the harmful side effects. CONPs were not able to significantly affect RT-induced DNA damage in cancer cells, thereby ruling out sensitization through increased mitotic catastrophe. However, activation of c-Jun terminal kinase (JNK), a key driver of RT-induced apoptosis, was significantly enhanced by co-treatment with CONPs and RT in pancreatic cancer cells in vitro and human pancreatic tumors in nude mice in vivo compared to CONPs or RT treatment alone. Further, CONP-driven increase in RT-induced JNK activity was associated with a marked increase in Caspase 3/7 activation, indicative of apoptosis. We have previously shown that CONPs increase reactive oxygen species (ROS) production in cancer cells. ROS has been shown to drive the oxidation of thioredoxin 1 (TRX1) which results in the activation of apoptosis signaling kinase 1 (ASK1). The increase in ASK1 activation following the co-treatment with CONPs followed by RT suggests that the increased JNK activation is the result of increased TRX1 oxidation. The ability of CONPs to sensitize pancreatic cancer cells to RT was mitigated when the TRX1 oxidation was prevented by mutagenesis of a cysteine residue or when the JNK activation was blocked by an inhibitor. Taken together, these data demonstrate an important mechanism for CONPs in specifically killing cancer cells and provide novel insights into the utilization of CONPs as a radiosensitizer and therapeutic agent for pancreatic cancer.

2.
J Med Chem ; 57(10): 4023-34, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24784222

ABSTRACT

The motuporamines isolated from the sea sponge Xestospongia exigua are of biological interest because of their unique antimigration and antiangiogenic properties. Key bioactive features were found to be a saturated 15-membered heterocycle and a norspermidine motif. This paper describes new analogues that modulate the cytotoxicity of this compound class and have enhanced antimigration properties. By movement of the polyamine chain outside the ring, new carbocycles were discovered that doubled the antimigration potency and reduced compound toxicity by 133-fold. Mice injected with metastatic human L3.6pl pancreatic cancer cells demonstrated significant reduction in liver metastases when treated with N(1)-(3-aminopropyl)-N(3)-(cyclopentadecylmethyl)propane-1,3-diamine compared with dihydromotuporamine C. Significant changes in specific ceramide populations (N16:0 and N22:1) were noted in L3.6pl cells treated with dihydromotuporamine C but not for the cyclopentadecylmethylnorspermidine derivative, which had lower toxicity. Both compounds gave increased levels of specific low molecular weight sphingomyelins, suggesting that they may act upon sphingomyelin processing enzymes.


Subject(s)
Antimetabolites, Antineoplastic/chemical synthesis , Heterocyclic Compounds, 1-Ring/pharmacology , Neoplasm Metastasis/prevention & control , Propylamines/pharmacology , Animals , Antimetabolites, Antineoplastic/pharmacology , CHO Cells , Cell Movement/drug effects , Cricetinae , Cricetulus , Humans , Mice, Nude , Sphingomyelins/metabolism , Xenograft Model Antitumor Assays
3.
Am J Transl Res ; 5(2): 126-31, 2013.
Article in English | MEDLINE | ID: mdl-23573358

ABSTRACT

The diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat a number of diseases, including cancer. In vitro and in vivo studies have shown CONPs to be toxic to cancer cells, inhibit invasion, and sensitize cancer cells to radiation therapy. However, CONPs display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species (ROS) generation. The antioxidant capabilities of CONPs, which enable radiation protection, have also resulted in the exploration of these particles as a potential treatment for other disorders characterized by ROS accumulation, such as diabetes and macular degeneration. While critical information regarding the uptake, retention, and clearance of these particles is incomplete and conflicting reports exist about in vitro toxicity, most research into the various applications of CONPs has yielded promising data. This review highlights the current research into cerium oxide nanoparticles as a novel therapeutic for the treatment of cancer and other diseases.

4.
Nanomedicine ; 9(4): 558-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23178284

ABSTRACT

Side effect of radiation therapy (RT) remains the most challenging issue for pancreatic cancer treatment. In this report we determined whether and how cerium oxide nanoparticles (CONPs) sensitize pancreatic cancer cells to RT. CONP pretreatment enhanced radiation-induced reactive oxygen species (ROS) production preferentially in acidic cell-free solutions as well as acidic human pancreatic cancer cells. In acidic environments, CONPs favor the scavenging of superoxide radical over the hydroxyl peroxide resulting in accumulation of the latter whereas in neutral pH CONPs scavenge both. CONP treatment prior to RT markedly potentiated the cancer cell apoptosis both in culture and in tumors and the inhibition of the pancreatic tumor growth without harming the normal tissues or host mice. Taken together, these results identify CONPs as a potentially novel RT-sensitizer as well as protectant for improving pancreatic cancer treatment. FROM THE CLINICAL EDITOR: Pancreatic tumors remain some of the most notoriously treatment-unresponsive malignancies. Cerium oxide nanoparticles may be capable of sensitizing such cells to radiotherapy, as demonstrated in this study.


Subject(s)
Cerium/chemistry , Metal Nanoparticles , Pancreatic Neoplasms/pathology , Radiation-Sensitizing Agents , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans , Hydrogen Peroxide/metabolism
5.
J Biol Chem ; 287(52): 43720-9, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23105099

ABSTRACT

Krüppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, the role of KLF8 in cancer remains largely unknown. Here, we report a surprisingly novel role for KLF8 in DNA repair in breast cancer cells. Comet, clonogenic, and WST-1 assays showed that KLF8 expression is required for protecting human breast cancer cells from doxorubicin-induced DNA damage and cell death. Western blotting indicated that overexpression of ectopic KLF8 attenuated the levels of the DNA damage marker γH2A.X in doxorubicin-treated PARP-1(+/+) but not PARP-1(-/-) mouse embryonic fibroblasts, whereas the PARP-1-binding-defective KLF8 mutant failed to do so. Interestingly, in response to the DNA damage, KLF8 was phosphorylated by the DNA-dependent protein kinase catalytic subunit and, subsequently, SUMOylated by SUMO E3 ligases protein inhibitors of activated STAT (PIASs), which depends upon the interaction of KLF8 with DNA-dependent protein kinase catalytic subunit, PIASs, and PARP-1 as well as their enzymatic activities. Lastly, we show evidence that KLF8 was recruited to the DNA damage site. These results suggest a novel role and mechanism for KLF8 in the regulation of DNA repair and therapeutic resistance in breast cancer cells.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/metabolism , DNA Repair/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/metabolism , Repressor Proteins/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Repair/genetics , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Drug Resistance, Neoplasm/genetics , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Humans , Kruppel-Like Transcription Factors , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Repressor Proteins/genetics , Sumoylation/drug effects , Sumoylation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Nanomedicine ; 8(7): 1223-31, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22248817

ABSTRACT

This article reports the evaluation of cerium oxide (CeO(2)) nanoparticles' ability to decrease xerostomia and radiation-induced dermatitis in mice after head and neck radiation. Mice were irradiated using an IC160 x-ray system. Two cohorts were included: (A) No-radiation and (B) 30 Gy/6 fractions, and were randomized into three groups: (1) saline, (2) 15 nM CeO(2) and (3) 15 µM CeO(2). Stimulated salivary flow and radiation-induced dermatitis were evaluated post radiation. Stimulated sialometry demonstrated improved salivary production in all CeO(2) groups in comparison with controls (flow: 204 vs. 115 µL/10 minutes, P = 0.0002). One week post radiation, G-III dermatitis decreased in the 15 µM group in comparison with controls (10% versus 100% incidence, respectively). There was decreased skin hyperpigmentation at 12 weeks in the 15-µM group in comparison with 15-nM and non-CeO(2) groups (50%, 70%, and 90% G-II, respectively). This study suggests that CeO(2) may be radioprotective for salivary production and reduces G-III dermatitis and skin hyperpigmentation incidence. CeO(2) as radioprotectant may be a feasible concept during radiotherapy. FROM THE CLINICAL EDITOR: This study demonstrates in a mouse model that cerium oxide (CeO(2)) nanoparticles may provide an important mechanism in preventing radiation induced xerostomia, a common complication of head and neck radiation treatments.


Subject(s)
Cerium/therapeutic use , Dermatitis/prevention & control , Head and Neck Neoplasms/radiotherapy , Nanoparticles/therapeutic use , Radiotherapy/adverse effects , Xerostomia/prevention & control , Animals , Cerium/chemistry , Dermatitis/etiology , Female , Mice , Mice, Nude , Nanoparticles/chemistry , Skin/drug effects , Skin/radiation effects , Xerostomia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...