Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35215431

ABSTRACT

The gut microbiota has been shown in recent years to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of a 2-week functional food intervention on the gut microbiota composition in prediabetic individuals. A randomized double-blind, cross-over trial was conducted on prediabetic subjects. Fifteen volunteers were provided products made of: (i) 50% taro flour + 50% wheat flour; (ii) these products and the probiotic L. plantarum IS-10506; or (iii) these products with beetroot adsorbed for a period of 2 weeks with 2 weeks wash-out in between. Stool and blood samples were taken at each baseline and after each of the interventions. The gut microbiota composition was evaluated by sequencing the V3-V4 region of the 16S rRNA gene and anthropometric measures were recorded. The total weight loss over the entire period ranged from 0.5 to 11 kg. The next-generation sequencing showed a highly personalized microbiota composition. In the principal coordinate analyses, the samples of each individual clustered closer together than the samples of each treatment. For six individuals, the samples clustered closely together, indicating a stable microbiota. For nine individuals, the microbiota was less resilient and, depending on the intervention, the beta-diversity transiently differed greatly only to return to the composition close to the baseline during the wash-out. The statistical analyses showed that 202 of the total 304 taxa were significantly different between the participants. Only Butyricimonas could be correlated with taro ingestion. The results of the study show that the highly variable interindividual variation observed in the gut microbiota of the participants clouded any gut microbiota modulation that might be present due to the functional food interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Prediabetic State , Dietary Supplements , Feces , Flour , Functional Food , Humans , Indonesia , RNA, Ribosomal, 16S/genetics , Triticum/genetics , Weight Loss
2.
J Nutr Metab ; 2021: 1825209, 2021.
Article in English | MEDLINE | ID: mdl-34094596

ABSTRACT

Background and Objectives. The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of potential functional food ingredients, alone or in combination, on the gut microbiota composition in diabetic rats in a pilot study of 1 week of feeding. Methods. In a pilot study to modulate the composition of the gut microbiota, (i) native taro starch, (ii) modified taro starch, (iii) beet juice, (iv) psicose, (v) the probiotic L. plantarum IS-10506, (vi) native starch combined with beet juice, (vii) native starch to which beet juice was adsorbed, (viii) modified starch combined with beet juice, and (ix) modified starch to which beet juice was adsorbed were fed to rats in which T2D was induced with streptozotocin (STZ). After one week, the composition of the gut microbiota was evaluated by sequencing the PCR-amplified V3-V4 region of the 16S rRNA gene. Results and Conclusions. The next-generation sequencing showed that 13 microbial taxa of the gut microbiota were significantly different between groups, depending on the treatment. The results of this pilot study will be used to design a 4-week intervention study in STZ-induced T2D rats to determine the best functional food for counteracting T2D, including their effects on satiety hormones. This should ultimately lead to the development of functional foods for prediabetic and diabetic individuals.

3.
Nutr Metab (Lond) ; 17: 77, 2020.
Article in English | MEDLINE | ID: mdl-32968426

ABSTRACT

BACKGROUND: The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes. The aim of the present study was to test the effect of 4-week functional food ingredient feeding, alone or in combination, on the gut microbiota composition in diabetic rats. METHODS: Streptozotocin (STZ)-induced diabetic rats were treated for 4 weeks with (1) native taro starch, (2) modified taro-starch, (3) beet juice, (4) psicose, (5) the probiotic L. plantarum IS-10506, (6) native starch combined with beet juice, (7) native starch to which beet juice was adsorbed, (8) modified starch combined with beet juice or (9) modified starch to which beet juice was adsorbed, to modulate the composition of the gut microbiota. This composition was evaluated by sequencing the PCR amplified V3-V4 region of the 16S rRNA gene. RESULTS: The next-generation sequencing showed beneficial effects particularly of taro-starch feeding. Operational taxonomic units (OTUs) related to health (e.g. correlating with low BMI, OTUs producing butyrate) were increased in relative abundance, while OTUs generally correlated with disease (e.g. Proteobacteria) were decreased by feeding taro-starch. CONCLUSION: The results of study show that a 4-week intervention with functional food ingredients, particularly taro-derived starch, leads to a more healthy gut microbiota in rats that were induced to be diabetic by induction with STZ.

SELECTION OF CITATIONS
SEARCH DETAIL
...