Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473836

ABSTRACT

Immunoadsorption (IA) has proven to be clinically effective in the treatment of steroid-refractory multiple sclerosis (MS) relapses, but its mechanism of action remains unclear. We used miniaturized adsorber devices with a tryptophan-immobilized polyvinyl alcohol (PVA) gel sorbent to mimic the IA treatment of patients with MS in vitro. The plasma was screened before and after adsorption with regard to disease-specific mediators, and the effect of the IA treatment on the migration of neutrophils and the integrity of the endothelial cell barrier was tested in cell-based models. The in vitro IA treatment with miniaturized adsorbers resulted in reduced plasma levels of cytokines and chemokines. We also found a reduced migration of neutrophils towards patient plasma treated with the adsorbers. Furthermore, the IA-treated plasma had a positive effect on the endothelial cell barrier's integrity in the cell culture model. Our findings suggest that IA results in a reduced infiltration of cells into the central nervous system by reducing leukocyte transmigration and preventing blood-brain barrier breakdown. This novel approach of performing in vitro blood purification therapies on actual patient samples with miniaturized adsorbers and testing their effects in cell-based assays that investigate specific hypotheses of the pathophysiology provides a promising platform for elucidating the mechanisms of action of those therapies in various diseases.


Subject(s)
Multiple Sclerosis , Humans , Pilot Projects , Plasma , Neutrophils , Leukocytes
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628734

ABSTRACT

Human serum albumin (HSA) as the most abundant plasma protein carries multifunctional properties. A major determinant of the efficacy of albumin relies on its potent binding capacity for toxins and pharmaceutical agents. Albumin binding is impaired in pathological conditions, affecting its function as a molecular scavenger. Limited knowledge is available on the functional properties of albumin in critically ill patients with sepsis or septic shock. A prospective, non-interventional clinical trial assessed blood samples from 26 intensive care patients. Albumin-binding capacity (ABiC) was determined by quantifying the unbound fraction of the fluorescent marker, dansyl sarcosine. Electron paramagnetic resonance fatty acid spin-probe evaluated albumin's binding and detoxification efficiencies. Binding efficiency (BE) reflects the strength and amount of bound fatty acids, and detoxification efficiency (DTE) indicates the molecular flexibility of patient albumin. ABiC, BE, and DTE effectively differentiated control patients from those with sepsis or septic shock (AUROC > 0.8). The diagnostic performance of BE showed similarities to procalcitonin. Albumin functionality correlates with parameters for inflammation, hepatic, or renal insufficiency. Albumin-binding function was significantly reduced in critically ill patients with sepsis or septic shock. These findings may help develop patient-specific algorithms for new diagnostic and therapeutic approaches.


Subject(s)
Sepsis , Shock, Septic , Humans , Shock, Septic/diagnosis , Pilot Projects , Critical Illness , Prospective Studies , Sepsis/diagnosis , Albumins , Critical Care
3.
Biomed Mater ; 18(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36599165

ABSTRACT

The extracellular matrix (ECM) obtained by decellularization provides scaffolds with the natural complex architecture and biochemical composition of the target organ. Whole kidney decellularization by perfusion uses the vasculature to remove cells leaving a scaffold that can be recellularized with patient-specific cells. However, decellularization and recellularization are highly complex processes that require intensive optimization of various parameters. In pursuit of this, a huge number of animals must be sacrificed. Therefore, we used precision-cut kidney slices (PCKS) as a source of natural scaffolds, which were decellularized by immersion in chemical reagents allowing the examination of more parameters with less animals. However, chemical reagents have a damaging effect on the structure and components of the ECM. Therefore, this study aimed at investigating the effects of physical treatment methods on the effectiveness of PCKS decellularization by immersion in chemical reagents (CHEM). PCKS were treated physically before or during immersion in chemicals (CHEM) with high hydrostatic pressure (HHP), freezing-thawing cycles (FTC) or in an ultrasonic bath system (UBS). Biochemical and DNA quantification as well as structural evaluation with conventional histology and scanning electron microscopy (SEM) were performed. Compared to decellularization by CHEM alone, FTC treatment prior to CHEM was the most effective in reducing DNA while also preserving glycosaminoglycan (GAG) content. Moreover, while UBS resulted in a comparable reduction of DNA, it was the least effective in retaining GAGs. In contrast, despite the pretreatment with HHP with pressures up to 200 MPa, it was the least effective in DNA removal. Histological scoring showed that HHP scaffolds received the best score followed by UBS, FTC and CHEM scaffolds. However further analysis with SEM demonstrated a higher deterioration of the ultrastructure in UBS scaffolds. Altogether, pretreatment with FTC prior to CHEM resulted in a better balance between DNA removal and structural preservation.


Subject(s)
Extracellular Matrix , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Kidney , Freezing , DNA/analysis , Tissue Engineering/methods
4.
BMC Nephrol ; 23(1): 162, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484519

ABSTRACT

BACKGROUND: The progression of chronic kidney disease (CKD) is associated with an increasing risk of cardiovascular morbidity and mortality due to elevated serum phosphate levels. Besides low phosphate diets and hemodialysis, oral phosphate binders are prescribed to treat hyperphosphatemia in CKD patients. This study reports on a processed clay mineral as a novel and efficient phosphate sorbent with comparable efficacy of a clinically approved phosphate binder. METHODS: 5/6 nephrectomized rats, which develop chronic renal failure (CRF), received a high phosphate and calcium diet supplemented with either a processed Montmorillonite-Illite clay mineral (pClM) or lanthanum carbonate (LaC) for 12 weeks. Levels of plasma uremic toxins, glomerular filtration rates and microalbuminuria were determined and the histomorphology of blood vessels and smooth muscle cells was analyzed. RESULTS: 5/6 nephrectomy induced an increase in plasma uremic toxins levels and progressive proteinuria. Treatment of CRF rats with pClM decreased observed vascular pathologies such as vascular fibrosis, especially in coronary vessels. The transition of vascular smooth muscle cells from a contractile to a secretory phenotype was delayed. Moreover, pClM administration resulted in decreased blood creatinine and urea levels, and increased glomerular filtration rates, reduced microalbuminuria and eventually the mortality rate in CRF rats. CONCLUSION: Our study reveals pClM as a potent phosphate binding agent with beneficial impacts on pathophysiological processes in an animal model of CKD. pClM effectively attenuates the progression of vascular damage and loss of renal function which are the most severe consequences of chronic renal failure.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Albuminuria/complications , Animals , Clay , Female , Humans , Kidney Failure, Chronic/complications , Male , Minerals , Phosphates , Rats , Renal Insufficiency, Chronic/complications
5.
Blood Purif ; 50(6): 899-905, 2021.
Article in English | MEDLINE | ID: mdl-33631754

ABSTRACT

INTRODUCTION: Continuous renal replacement therapies (CRRTs) are essential in the treatment of critically ill patients with acute kidney injury and are also discussed as a supporting sepsis therapy. CRRT can affect antibiotics plasma concentrations. OBJECTIVE: The effect of continuous venovenous hemofiltration (CVVH) with an asymmetric triacetate (ATA) membrane hemofilter on concentrations of antibiotics with low (meropenem), medium (vancomycin), and high (daptomycin) protein binding (PB) was investigated. METHODS: 1 L human whole blood supplemented with antibiotics was recirculated and filtrated for 6 h in vitro. Clearances and sieving coefficients (SC) were determined from antibiotics concentrations measured at filter inlet, outlet, and filtrate side. Reservoir concentration data were fitted using a first-order kinetic model. RESULTS: Meropenem and vancomycin concentrations decreased to 5-10% of the initial plasma level, while only 50% of daptomycin were removed. Clearances and SCs were (10.8 [10.8-17.4] mL/min, SC = 0.72 [0.72-1.16]) for meropenem, (13.4 [12.3-13.7] mL/min, 0.89 [0.82-0.92]) for vancomycin, and (2.1 [1.8-2.1] mL/min, 0.14 [0.12-0.14]) for daptomycin. Removal by adsorption was negligible. CONCLUSIONS: The clearances and SCs presented are comparable with findings of other authors. Meropenem and vancomycin, which exhibit low and medium PB, respectively, were strongly removed, while considerably less daptomycin was removed because of its high PB. Our results suggest that in clinical use of the tested antibiotics during CRRT with the ATA hemofilter, the same factors have to be considered for determining the dosing strategy as with filters with other commonly applied membrane materials.


Subject(s)
Acetates/chemistry , Anti-Bacterial Agents/isolation & purification , Continuous Renal Replacement Therapy/instrumentation , Hemofiltration/instrumentation , Membranes, Artificial , Daptomycin/isolation & purification , Filtration/instrumentation , Humans , Meropenem/isolation & purification , Vancomycin/isolation & purification
6.
J Artif Organs ; 21(4): 435-442, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30039457

ABSTRACT

Hemofilters applied in continuous renal replacement therapies (CRRTs) for the treatment of acute kidney injury must meet high standards in biocompatibility and permeability for middle and large molecules over extended treatment times. In general, cellulose-based membranes exhibit good biocompatibility and low fouling, and thus appear to be beneficial for CRRT. In this in vitro study, we compared a novel asymmetric cellulose triacetate (ATA) membrane with three synthetic membranes [polysulfone (PS), polyethersulfone (PES), and polyethylenimine-treated acrylonitrile/sodium methallyl sulfonate copolymer (AN69 ST)] regarding thrombogenicity and cytokine removal. For thrombogenicity assessment, we analyzed the thrombin-antithrombin complex (TAT) generation in human whole blood during 5 h recirculation and filtration. Sieving coefficients of interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor-alpha (TNF-α) were determined using human plasma as test fluid. ATA and AN69 ST membrane permeability were determined also during long-term experiments (48.5 h). ATA exhibited the lowest TAT generation (6.3 µg/L at 5 h), while AN69 ST induced a pronounced concentration increase (152.1 µg/L) and filter clogging during 4 out of 5 experiments. ATA (IL-8: 1.053; IL-6: 1.079; IL-10: 0.898; TNF-α: 0.493) and PES (0.973; 0.846; 0.468; 0.303) had the highest sieving coefficients, while PS (0.697; 0.100; 0.014; 0.012) and AN69 ST (N/A; 0.717; 0; 0.063) exhibited lower permeability. Long-term experiments revealed stronger fouling of the AN69 ST compared to the ATA membrane. We observed the highest permeability for the tested cytokines, the lowest thrombogenicity, and the lowest fouling with the ATA membrane. In CRRT, these factors may lead to increased therapy efficacy and lower incidence of coagulation-associated events.


Subject(s)
Acute Kidney Injury/therapy , Cellulose/analogs & derivatives , Cytokines/blood , Hemofiltration/instrumentation , Thrombosis/therapy , Acute Kidney Injury/blood , Acute Kidney Injury/complications , Blood Coagulation , Equipment Design , Follow-Up Studies , Humans , Membranes, Artificial , Thrombosis/blood , Thrombosis/etiology , Time Factors
8.
PLoS One ; 9(12): e115415, 2014.
Article in English | MEDLINE | ID: mdl-25526039

ABSTRACT

BACKGROUND: Determination of methylated Septin 9 (mSEPT9) in plasma has been shown to be a sensitive and specific biomarker for colorectal cancer (CRC). However, the relationship between methylated DNA in plasma and colon tissue of the same subjects has not been reported. METHODS: Plasma and matching biopsy samples were collected from 24 patients with no evidence of disease (NED), 26 patients with adenoma and 34 patients with CRC. Following bisulfite conversion of DNA a commercial RT-PCR assay was used to determine the total amount of DNA in each sample and the fraction of mSEPT9 DNA. The Septin-9 protein was assessed using immunohistochemistry. RESULTS: The percent of methylated reference (PMR) values for SEPT9 above a PMR threshold of 1% were detected in 4.2% (1/24) of NED, 100% (26/26) of adenoma and 97.1% (33/34) of CRC tissues. PMR differences between NED vs. adenoma and NED vs. CRC comparisons were significant (p<0.001). In matching plasma samples using a PMR cut-off level of 0.01%, SEPT9 methylation was 8.3% (2/24) of NED, 30.8% (8/26) of adenoma and 88.2% (30/34) of CRC. Significant PMR differences were observed between NED vs. CRC (p<0.01) and adenoma vs. CRC (p<0.01). Significant differences (p<0.01) were found in the amount of cfDNA (circulating cell-free DNA) between NED and CRC, and a modest correlation was observed between mSEPT9 concentration and cfDNA of cancer (R2 = 0.48). The level of Septin-9 protein in tissues was inversely correlated to mSEPT9 levels with abundant expression in normals, and diminished expression in adenomas and tumors. CONCLUSIONS: Methylated SEPT9 was detected in all tissue samples. In plasma samples, elevated mSEPT9 values were detected in CRC, but not in adenomas. Tissue levels of mSEPT9 alone are not sufficient to predict mSEPT9 levels in plasma. Additional parameters including the amount of cfDNA in plasma appear to also play a role.


Subject(s)
Adenoma/pathology , Colorectal Neoplasms/pathology , Methylation , Septins/genetics , Septins/metabolism , Adenoma/blood , Adenoma/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , DNA/blood , DNA/metabolism , Female , Humans , Male , Middle Aged
9.
BMC Cancer ; 13: 398, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23988185

ABSTRACT

BACKGROUND: The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. METHODS: Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). RESULTS: Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. CONCLUSIONS: Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to acquire hypermethylation subsequent to epithelial cells, possibly through field effects. The region in SEPT9 with disease-related hypermethylation also contains the CpGs targeted by a novel blood-based screening test (Epi proColon®), providing further support for the clinical relevance of this biomarker.


Subject(s)
Colorectal Neoplasms/genetics , CpG Islands , DNA Methylation , Septins/genetics , Adult , Aged , Colorectal Neoplasms/pathology , Female , Gene Order , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Septins/metabolism , Young Adult
10.
PLoS One ; 6(10): e26002, 2011.
Article in English | MEDLINE | ID: mdl-22028803

ABSTRACT

Cellular differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Using Differential Methylation Hybridization (DMH) in combination with a custom DMH array containing 51,243 features covering more than 16,000 murine genes, we carried out a genome-wide screen for cell- and tissue-specific differentially methylated regions (tDMRs) in undifferentiated embryonic stem cells (ESCs), in in-vitro induced neural stem cells (NSCs) and 8 differentiated embryonic and adult tissues. Unsupervised clustering of the generated data showed distinct cell- and tissue-specific DNA methylation profiles, revealing 202 significant tDMRs (p<0.005) between ESCs and NSCs and a further 380 tDMRs (p<0.05) between NSCs/ESCs and embryonic brain tissue. We validated these tDMRs using direct bisulfite sequencing (DBS) and methylated DNA immunoprecipitation on chip (MeDIP-chip). Gene ontology (GO) analysis of the genes associated with these tDMRs showed significant (absolute Z score>1.96) enrichment for genes involved in neural differentiation, including, for example, Jag1 and Tcf4. Our results provide robust evidence for the relevance of DNA methylation in early neural development and identify novel marker candidates for neural cell differentiation.


Subject(s)
Brain/cytology , Cell Differentiation/genetics , DNA Methylation , Genomics/methods , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , Cell Differentiation/drug effects , Cell Line , DNA Methylation/drug effects , Embryo, Mammalian , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Genetic Markers/genetics , Immunoprecipitation , Mice , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Organ Specificity , Reproducibility of Results , Sequence Analysis, DNA , Sulfites/pharmacology
11.
Int J Cancer ; 123(2): 484-489, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18398839

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is expressed at high levels on the surface of most carcinoma cells. SiRNA silencing of EpCAM expression leads to reduced metastatic potential of tumor cells demonstrating its importance in oncogenesis and tumor progression. However, siRNA therapy requires either sequential delivery or integration into the host cell genome. Hence we set out to explore a more definite form to influence EpCAM gene expression. The mechanisms underlying the transcriptional activation of the EpCAM gene, both in normal epithelial tissue as well as in carcinogenesis, are poorly understood. We show that DNA methylation plays a crucial role in EpCAM expression, and moreover, active silencing of endogenous EpCAM via methylation of the EpCAM promoter results in a persistent downregulation of EpCAM expression. In a panel of carcinoma derived cell lines, bisulfite analyses showed a correlation between the methylation status of the EpCAM promoter and EpCAM expression. Treatment of EpCAM-negative cell lines with a demethylating agent induced EpCAM expression, both on mRNA and protein level, and caused upregulation of EpCAM expression in an EpCAM-positive cell line. After delivery of the DNA methyltransferase M.SssI into EpCAM-positive ovarian carcinoma cells, methylation of the EpCAM promoter resulted in silencing of EpCAM expression. SiRNA-mediated silencing remained for 4 days, after which EpCAM re-expression increased in time, while M.SssI-mediated downregulation of EpCAM maintained through successive cell divisions as the repression persisted for at least 17 days. This is the first study showing that active DNA methylation leads to sustained silencing of endogenous EpCAM expression.


Subject(s)
Antigens, Neoplasm/metabolism , Carcinoma/metabolism , Cell Adhesion Molecules/metabolism , Cell Nucleus/metabolism , DNA Methylation , Antigens, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Azacitidine/pharmacology , Carcinoma/drug therapy , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Nucleus/drug effects , DNA Methylation/drug effects , DNA-Cytosine Methylases/metabolism , Down-Regulation , Epithelial Cell Adhesion Molecule , Female , Gene Expression Regulation, Neoplastic , Gene Silencing/drug effects , Humans , Ovarian Neoplasms/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transcription, Genetic , Up-Regulation/drug effects
12.
J Control Release ; 123(3): 228-38, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-17884225

ABSTRACT

Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA. Moreover, proteins complexed with Saint-2:DOPE were successfully delivered, irrespective of the presence of serum, and the profection efficiency was not influenced by the size or the charge of the protein:cationic liposomal complex. Using beta-galactosidase as a reporter protein, enzymatic activity was detected in up to 98% of the adherent cells, up to 83% of the suspension cells and up to 70% of the primary cells after profection. A delivered antibody was detected in the cytoplasm for up to 7 days after profection. Delivery of the methyltransferase M.SssI resulted in DNA methylation, leading to a decrease in E-cadherin expression. The lipid-mediated multipurpose transport system reported here can introduce proteins into the cell with an equal delivery efficiency as for nucleotides. Delivery is irrespective of the presence of serum, and the protein can exert its function both in the cytoplasm and in the nucleus. Furthermore, DNA methylation by M.SssI delivery as a novel tool for gene silencing has potential applications in basic research and therapy.


Subject(s)
Cell Nucleus/metabolism , Drug Carriers , Phosphatidylethanolamines/chemistry , Proteins/metabolism , Pyridinium Compounds/chemistry , Serum/metabolism , Active Transport, Cell Nucleus , Animals , Antibodies/metabolism , COS Cells , Cadherins/genetics , Cadherins/metabolism , Cations , Cell Nucleus/enzymology , Chemistry, Pharmaceutical , Chlorocebus aethiops , DNA/metabolism , DNA Methylation , DNA-Cytosine Methylases/metabolism , Drug Compounding , Gene Silencing , Humans , Jurkat Cells , Molecular Structure , Particle Size , Protein Conformation , Proteins/chemistry , Proteins/genetics , RNA, Small Interfering/metabolism , Time Factors , Transfection , beta-Galactosidase/metabolism
13.
Int J Biochem Cell Biol ; 39(7-8): 1539-50, 2007.
Article in English | MEDLINE | ID: mdl-17499000

ABSTRACT

Immortalized human cancer cell lines are widely used as tools and model systems in cancer research but their authenticity with regard to primary tissues remains a matter of debate. We have used differential methylation hybridisation to obtain comparative methylation profiles from normal and tumour tissues of lung and colon, and permanent cancer cell lines originally derived from these tissues. Average methylation differences only larger than 25% between sample groups were considered for the profiles and with this criterion approximately 1000 probesets, around 2% of the sites represented on the array, indicated differential methylation between normal lung and primary lung cancer tissue, and approximately 700 probesets between normal colon and primary colon cancer tissue. Both hyper- and hypomethylation was found to differentiate normal tissue from cancer tissue. The profiles obtained from these tissue comparisons were found to correspond largely to those from the corresponding cancer cell lines, indicating that the cell lines represent the methylation pattern of the primary tissue rather well. Moreover, the cancer specific profiles were found to be very similar for the two tumour types studied. Tissue specific differential methylation between lung and colon tissues, in contrast, was found to be preserved to a larger extent only in the malignant tissue, but was not preserved well in the cancer cell lines studied. Overall, our data therefore provide further evidence that permanent cell lines are good model systems for cancer specific methylation patterns, but deviate with regard to tissue-specific methylation.


Subject(s)
Colonic Neoplasms/metabolism , DNA Methylation , DNA, Neoplasm/metabolism , Lung Neoplasms/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , DNA, Neoplasm/analysis , Humans , Lung Neoplasms/pathology , Nucleic Acid Hybridization/methods
14.
Int J Biochem Cell Biol ; 39(7-8): 1523-38, 2007.
Article in English | MEDLINE | ID: mdl-17433759

ABSTRACT

Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.


Subject(s)
DNA Methylation , Lymphocytes/metabolism , Lymphoma/metabolism , Transcription Factors/metabolism , 5' Untranslated Regions , Cell Line, Tumor , Cell Lineage , Gene Expression Regulation, Neoplastic , Hematopoiesis , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphocytes/cytology , Lymphoma/pathology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...