Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 9(2): 248-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30373917

ABSTRACT

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Enzyme Inhibitors/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Retinoblastoma Binding Proteins/genetics , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
2.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002967

ABSTRACT

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Brain/drug effects , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/isolation & purification , Structure-Activity Relationship , Swimming
3.
Proc Natl Acad Sci U S A ; 109(44): 17960-5, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23071334

ABSTRACT

Protein arginine methyltransferases (PRMTs) play important roles in several cellular processes, including signaling, gene regulation, and transport of proteins and nucleic acids, to impact growth, differentiation, proliferation, and development. PRMT5 symmetrically di-methylates the two-terminal ω-guanidino nitrogens of arginine residues on substrate proteins. PRMT5 acts as part of a multimeric complex in concert with a variety of partner proteins that regulate its function and specificity. A core component of these complexes is the WD40 protein MEP50/WDR77/p44, which mediates interactions with binding partners and substrates. We have determined the crystal structure of human PRMT5 in complex with MEP50 (methylosome protein 50), bound to an S-adenosylmethionine analog and a peptide substrate derived from histone H4. The structure of the surprising hetero-octameric complex reveals the close interaction between the seven-bladed ß-propeller MEP50 and the N-terminal domain of PRMT5, and delineates the structural elements of substrate recognition.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Protein-Arginine N-Methyltransferases/chemistry , Catalytic Domain , Crystallography, X-Ray , Dimerization , Humans , Models, Molecular , Protein Conformation
4.
Proteins ; 80(8): 2110-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22544723

ABSTRACT

The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal "FG" repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.


Subject(s)
Fungal Proteins/chemistry , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Sequence Homology, Amino Acid , Amino Acid Sequence , Candida glabrata/chemistry , Crystallography, X-Ray , Humans , Molecular Sequence Data , Multiprotein Complexes/chemistry , Nuclear Envelope/chemistry , Protein Structure, Tertiary , Saccharomyces cerevisiae/chemistry
5.
Trends Pharmacol Sci ; 33(5): 261-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22521107

ABSTRACT

Synchrotron X-ray sources provide the highest quality crystallographic data for structure-guided drug design. In general, industrial utilization of such sources has been intermittent and occasionally limited. The Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline provides a unique alternative to traditional synchrotron use by pharmaceutical and biotechnology companies. Crystallographic experiments at LRL-CAT and the results therefrom are integrated directly into the drug discovery process, permitting structural data, including screening of fragment libraries, to be routinely and rapidly used on a daily basis as part of pharmaceutical lead discovery and optimization. Here we describe how LRL-CAT acquires and disseminates the results from protein crystallography to maximize their impact on the development of new potential medicines.


Subject(s)
Drug Discovery , Proteins/chemistry , Crystallography, X-Ray , Synchrotrons
7.
Structure ; 18(11): 1512-21, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21070950

ABSTRACT

Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins--the nitrogen regulatory protein NrpR--that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.


Subject(s)
Gene Expression Regulation, Archaeal/genetics , Ketoglutaric Acids/metabolism , Methanococcus/chemistry , Models, Molecular , Molecular Dynamics Simulation , PII Nitrogen Regulatory Proteins/chemistry , Protein Conformation , Transcription Factors/chemistry , Microscopy, Electron , Nitrogen/metabolism , PII Nitrogen Regulatory Proteins/metabolism , Quaternary Ammonium Compounds/metabolism , Transcription Factors/metabolism
10.
J Mol Biol ; 397(4): 883-92, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20156452

ABSTRACT

PHR [PAM (protein associated with Myc)-HIW (Highwire)-RPM-1 (regulator of presynaptic morphology 1)] proteins are conserved, large multi-domain E3 ubiquitin ligases with modular architecture. PHR proteins presynaptically control synaptic growth and axon guidance and postsynaptically regulate endocytosis of glutamate receptors. Dysfunction of neuronal ubiquitin-mediated proteasomal degradation is implicated in various neurodegenerative diseases. PHR proteins are characterized by the presence of two PHR domains near the N-terminus, which are essential for proper localization and function. Structures of both the first and second PHR domains of Mus musculus (mouse) Phr1 (MYC binding protein 2, Mycbp2) have been determined, revealing a novel beta sandwich fold composed of 11 antiparallel beta-strands. Conserved loops decorate the apical side of the first PHR domain (MmPHR1), yielding a distinct conserved surface feature. The surface of the second PHR domain (MmPHR2), in contrast, lacks significant conservation. Importantly, the structure of MmPHR1 provides insights into a loss-of-function mutation, Gly1092-->Glu, observed in the Caenorhabditis elegans ortholog RPM-1.


Subject(s)
Amino Acid Substitution/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans , Crystallography, X-Ray , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Ubiquitin-Protein Ligases
11.
Protein Eng Des Sel ; 23(5): 375-84, 2010 May.
Article in English | MEDLINE | ID: mdl-20150177

ABSTRACT

Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646(Delta405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-A resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The DeltaF508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Models, Molecular , Protein Conformation , Protein Structure, Tertiary/genetics , Binding Sites/genetics , Cloning, Molecular , Crystallization , Cystic Fibrosis Transmembrane Conductance Regulator/isolation & purification , DNA Primers/genetics , Dimerization , Humans , Mutation/genetics
12.
Mol Cancer Ther ; 8(12): 3181-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19934279

ABSTRACT

The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC50 of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.


Subject(s)
Adenosine Triphosphate/pharmacology , Neoplasms/prevention & control , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/pharmacology , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Catalysis/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Female , Humans , Kinetics , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/chemistry , Triazoles/chemistry , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...