Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Mol Mutagen ; 51(8-9): 746-60, 2010.
Article in English | MEDLINE | ID: mdl-20839221

ABSTRACT

This article traces the development of the field of mutagenesis and its metamorphosis into the research area we now call genetic toxicology. In 1969, this transitional event led to the founding of the Environmental Mutagen Society (EMS). The charter of this new Society was to "encourage interest in and study of mutagens in the human environment, particularly as these may be of concern to public health." As the mutagenesis field unfolded and expanded, new wording appeared to better describe this evolving area of research. The term "genetic toxicology" was coined and became an important subspecialty of the broad area of toxicology. Genetic toxicology is now set for a thorough reappraisal of its methods, goals, and priorities to meet the challenges of the 21st Century. To better understand these challenges, we have revisited the primary goal that the EMS founders had in mind for the Society's main mission and objective, namely, the quantitative assessment of genetic (hereditary) risks to human populations exposed to environmental agents. We also have reflected upon some of the seminal events over the last 40 years that have influenced the advancement of the genetic toxicology discipline and the extent to which the Society's major goal and allied objectives have been achieved. Additionally, we have provided suggestions on how EMS can further advance the science of genetic toxicology in the postgenome era. Any oversight or failure to make proper acknowledgment of individuals, events, or the citation of relevant references in this article is unintentional.


Subject(s)
Environment , Mutagens/toxicity , Societies, Scientific/history , History, 20th Century , History, 21st Century , Humans , Molecular Biology/trends , Societies, Scientific/trends
2.
Environ Mol Mutagen ; 48(2): 71-95, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17295306

ABSTRACT

Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in approximately 5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific specialty groups should be convened to review and prioritize the evidence for germ-cell mutagenicity from common environmental, occupational, medical, and lifestyle exposures. Workshop attendees agreed on the need for a full-scale assault to address key fundamental questions in human germ-cell environmental mutagenesis. These include, but are not limited to, the following: Do human germ-cell mutagens exist? What are the risks to future generations? Are some parents at higher risk than others for acquiring and transmitting germ-cell mutations? Obtaining answers to these, and other critical questions, will require strong support from relevant funding agencies, in addition to the engagement of scientists outside the fields of genomics and germ-cell mutagenesis.


Subject(s)
Genetic Diseases, Inborn/pathology , Genome, Human/genetics , Germ Cells/pathology , Germ-Line Mutation/genetics , Cost of Illness , Human Genome Project , Humans , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...