Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Oncogene ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789663

ABSTRACT

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.

2.
Toxins (Basel) ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668619

ABSTRACT

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Subject(s)
Cholera Toxin , Cysteine Endopeptidases , Golgi Apparatus , Humans , Cholera Toxin/metabolism , Cysteine Endopeptidases/metabolism , Golgi Apparatus/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Endocytosis
3.
J Invest Dermatol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38570030

ABSTRACT

BACE1 is well-known for its role in the development of Alzheimer's disease. Recent publications, including our own, have demonstrated a role for this enzyme in other chronic diseases. The aim of this study was to investigate the role of BACE1 in the autoimmune disease systemic sclerosis (SSc). BACE1 protein levels were elevated in the skin of patients with SSc. Inhibition of BACE1 with small-molecule inhibitors or small interfering RNA blocked SSc and fibrotic stimuli-mediated fibroblast activation. Furthermore, we show that BACE1 regulation of dermal fibroblast activation is dependent on ß-catenin and Notch signaling. The neurotropic factor brain-derived neurotrophic factor negatively regulates BACE1 expression and activity in dermal fibroblasts. Finally, sera from patients with SSc show higher ß-amyloid and lower brain-derived neurotrophic factor levels than healthy controls. The ability of BACE1 to regulate SSc fibroblast activation reveals a therapeutic target in SSc. Several BACE1 inhibitors have been shown to be safe in clinical trials for Alzheimer's disease and could be repurposed to ameliorate fibrosis progression.

4.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293147

ABSTRACT

Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.

5.
Semin Arthritis Rheum ; 63: 152268, 2023 12.
Article in English | MEDLINE | ID: mdl-37776665

ABSTRACT

INTRODUCTION: Over the years several lines of evidence have implied a pathological involvement of autonomic nervous system (ANS) in systemic sclerosis (SSc). However, the relationship between autonomic dysfunction and SSc is not yet fully understood. The aims of this scoping review were to map the research done in this field and inform future research to investigate pathogenic hypotheses of ANS involvement. METHODS: We performed a scoping review of publications collected through a literature search of MEDLINE and Web of Science databases, looking for dysautonomia in SSc. We included original data from papers that addressed ANS involvement in SSc regarding pathogenesis, clinical presentation and diagnostic tools. RESULTS: 467 papers were identified, 109 studies were selected to be included in the present review, reporting data from a total of 2742 SSc patients. Cardiovascular system was the most extensively investigated, assessing heart rate variability with 24 h HolterECG or Ewing's autonomic tests. Important signs of dysautonomia were also found in digital vasculopathy, gastrointestinal system and SSc skin, assessed both with non-invasive techniques and histologically. Research hypotheses mainly regarding the relationship between sympathetic system - ischemia and the role of neurotrophins were then developed and discussed. CONCLUSION: We described the currently available evidence on pathogenesis, clinical presentation and diagnostic assessment of dysautonomia in SSc patients. A strong influence of ANS deregulation on SSc clearly emerges from the literature. Future research is warranted to clarify the mechanisms and timing of autonomic dysfunction in SSc.


Subject(s)
Autonomic Nervous System Diseases , Scleroderma, Systemic , Humans , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System , Heart Rate/physiology , Scleroderma, Systemic/complications , Gastrointestinal Tract
6.
J Med Virol ; 95(8): e29025, 2023 08.
Article in English | MEDLINE | ID: mdl-37565725

ABSTRACT

Human papillomaviruses (HPVs) infect the oral and anogenital mucosa and can cause cancer. The high-risk (HR)-HPV oncoproteins, E6 and E7, hijack cellular factors to promote cell proliferation, delay differentiation and induce genomic instability, thus predisposing infected cells to malignant transformation. cAMP response element (CRE)-binding protein 1 (CREB1) is a master transcription factor that can function as a proto-oncogene, the abnormal activity of which is associated with multiple cancers. However, little is known about the interplay between HPV and CREB1 activity in cervical cancer or the productive HPV lifecycle. We show that CREB is activated in productively infected primary keratinocytes and that CREB1 expression and phosphorylation is associated with the progression of HPV+ cervical disease. The depletion of CREB1 or inhibition of CREB1 activity results in decreased cell proliferation and reduced expression of markers of epithelial to mesenchymal transition, coupled with reduced migration in HPV+ cervical cancer cell lines. CREB1 expression is negatively regulated by the tumor suppressor microRNA, miR-203a, and CREB1 phosphorylation is controlled through the MAPK/MSK pathway. Crucially, CREB1 directly binds the viral promoter to upregulate transcription of the E6/E7 oncogenes, establishing a positive feedback loop between the HPV oncoproteins and CREB1. Our findings demonstrate the oncogenic function of CREB1 in HPV+ cervical cancer and its relationship with the HPV oncogenes.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Epithelial-Mesenchymal Transition , Repressor Proteins/genetics , Oncogenes , Cyclic AMP Response Element-Binding Protein/genetics
7.
Oncogene ; 42(34): 2558-2577, 2023 08.
Article in English | MEDLINE | ID: mdl-37443304

ABSTRACT

Persistent infection with high-risk human papillomaviruses (HPVs) is the causal factor in multiple human malignancies, including >99% of cervical cancers and a growing proportion of oropharyngeal cancers. Prolonged expression of the viral oncoproteins E6 and E7 is necessary for transformation to occur. Although some of the mechanisms by which these oncoproteins contribute to carcinogenesis are well-characterised, a comprehensive understanding of the signalling pathways manipulated by HPV is lacking. Here, we present the first evidence to our knowledge that the targeting of a host ion channel by HPV can contribute to cervical carcinogenesis. Through the use of pharmacological activators and inhibitors of ATP-sensitive potassium ion (KATP) channels, we demonstrate that these channels are active in HPV-positive cells and that this activity is required for HPV oncoprotein expression. Further, expression of SUR1, which forms the regulatory subunit of the multimeric channel complex, was found to be upregulated in both HPV+ cervical cancer cells and in samples from patients with cervical disease, in a manner dependent on the E7 oncoprotein. Importantly, knockdown of SUR1 expression or KATP channel inhibition significantly impeded cell proliferation via induction of a G1 cell cycle phase arrest. This was confirmed both in vitro and in in vivo tumourigenicity assays. Mechanistically, we propose that the pro-proliferative effect of KATP channels is mediated via the activation of a MAPK/AP-1 signalling axis. A complete characterisation of the role of KATP channels in HPV-associated cancer is now warranted in order to determine whether the licensed and clinically available inhibitors of these channels could constitute a potential novel therapy in the treatment of HPV-driven cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Transcription Factor AP-1 , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Oncogene Proteins, Viral/physiology , Papillomavirus E7 Proteins/genetics , Cell Proliferation , Carcinogenesis , Adenosine Triphosphate
8.
Cells ; 11(3)2022 02 03.
Article in English | MEDLINE | ID: mdl-35159339

ABSTRACT

Chloride intracellular channel 4 (CLIC4) is a recently discovered driver of fibroblast activation in Scleroderma (SSc) and cancer-associated fibroblasts (CAF). CLIC4 expression and activity are regulated by TGF-ß signalling through the SMAD3 transcription factor. In view of the aberrant activation of canonical Wnt-3a and Hedgehog (Hh) signalling in fibrosis, we investigated their role in CLIC4 upregulation. Here, we show that TGF-ß/SMAD3 co-operates with Wnt3a/ß-catenin and Smoothened/GLI signalling to drive CLIC4 expression in normal dermal fibroblasts, and that the inhibition of ß-catenin and GLI expression or activity abolishes TGF-ß/SMAD3-dependent CLIC4 induction. We further show that the expression of the pro-fibrotic marker α-smooth muscle actin strongly correlates with CLIC4 expression in dermal fibroblasts. Further investigations revealed that the inhibition of CLIC4 reverses morphogen-dependent fibroblast activation. Our data highlights that CLIC4 is a common downstream target of TGF-ß, Hh, and Wnt-3a through signalling crosstalk and we propose a potential therapeutic avenue using CLIC4 inhibitors.


Subject(s)
Chloride Channels , Transforming Growth Factor beta , Wnt3A Protein , Zinc Finger Protein Gli2 , beta Catenin , Chloride Channels/metabolism , Fibroblasts/metabolism , Fibrosis , Hedgehog Proteins/metabolism , Humans , Nuclear Proteins/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation , Wnt3A Protein/metabolism , Zinc Finger Protein Gli2/metabolism , beta Catenin/metabolism
9.
Ann Rheum Dis ; 80(7): 920-929, 2021 07.
Article in English | MEDLINE | ID: mdl-33542104

ABSTRACT

OBJECTIVES: Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS: RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS: RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS: Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.


Subject(s)
Dendritic Cells/immunology , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Scleroderma, Localized/immunology , Scleroderma, Localized/pathology , Animals , Dendritic Cells/pathology , Disease Models, Animal , Fibrosis , Heterografts , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Scleroderma, Localized/metabolism , Skin/immunology , Skin/metabolism , Skin/pathology
10.
Rheumatology (Oxford) ; 60(9): 4395-4400, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33331912

ABSTRACT

OBJECTIVES: Tissue fibrosis in SSc is driven by active fibroblasts (myofibroblasts). Previous studies have shown the intracellular chloride channel 4 (CLIC4) mediates the activation of cancer-associated fibroblasts. In this study we investigated the role of CLIC4 in SSc fibroblast activation. METHODS: Fibroblasts were obtained from full thickness skin biopsies from SSc patients (early-diffuse). RNA and protein were collected from the fibroblasts and CLIC4 transcript and protein levels were assessed by qPCR and western blot. SSc patient fibroblasts were treated with the chloride channel inhibitors nitro-2-(3-phenylpropylamino)benzoic acid and indyanyloxyacetic acid 94. RESULTS: CLIC4 was expressed at significantly higher levels in SSc patients' fibroblasts compared with healthy controls, at both the transcript (3.7-fold) and protein (1.7-fold) levels. Inhibition of the TGF-ß receptor and its downstream transcription factor SMAD3 led to a reduction in CLIC4 expression, confirming this pathway as the main driver of CLIC4 expression. Importantly, treatment of SSc fibroblasts with known pharmacological inhibitors of CLIC4 led to reduced expression of the myofibroblast markers collagen type 1 and α-smooth muscle actin, inferring a direct role for CLIC4 in disease pathogenesis. CONCLUSIONS: We have identified a novel role for CLIC4 in SSc myofibroblast activation, which strengthens the similarities of SSc fibroblasts with cancer-associated fibroblasts and highlights this channel as a novel target for therapeutic intervention.


Subject(s)
Chloride Channels/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Scleroderma, Systemic/metabolism , Cell Line , Chloride Channels/genetics , Humans , Scleroderma, Systemic/genetics , Signal Transduction/genetics
11.
Cell Death Differ ; 28(5): 1669-1687, 2021 05.
Article in English | MEDLINE | ID: mdl-33303976

ABSTRACT

Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer.


Subject(s)
MAP Kinase Kinase 4/metabolism , Oncogene Proteins, Viral/metabolism , Uterine Cervical Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Female , Humans , Signal Transduction , Tumor Microenvironment , Uterine Cervical Neoplasms/pathology
12.
Arthritis Res Ther ; 22(1): 286, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303026

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is characterised by tissue fibrosis of the major organs of the body including the skin, lungs and heart. We have previously reported that the lncRNA HOTAIR plays a central role in the activation of SSc myofibroblasts, the key cellular elements of fibrosis. HOTAIR induces fibroblast activation through H3K27me3-mediated activation of the Notch signalling pathway. Here we aimed to identify the signalling events downstream of Notch that drive SSc myofibroblast activation. METHODS: Patient fibroblasts were obtained from full-thickness forearm skin biopsies of 3 adult patients with SSc of recent onset. The lncRNA HOTAIR was expressed in healthy dermal fibroblasts by lentiviral transduction. Hedgehog signalling pathway was inhibited with GANT61 and GLI2 siRNA. Gamma secretase inhibitors RO4929097 and DAPT were used to block Notch signalling. GSK126 was used to inhibit Enhancer of Zeste 2 (EZH2). RESULTS: Overexpression of HOTAIR in dermal fibroblasts induced the expression of the Hedgehog pathway transcription factor GLI2. This is mediated by activation of Notch signalling following epigenetic downregulation of miRNA-34a expression. Inhibition of H3K27 methylation and Notch signalling reduced expression of GLI2 in HOTAIR-expressing fibroblasts as well as in SSc dermal fibroblasts. Importantly, the inhibition of GLI2 function using GANT61 or siRNA mitigates the pro-fibrotic phenotype induced by HOTAIR. CONCLUSIONS: Our data indicates that GLI2 expression is stably upregulated in SSc myofibroblasts through HOTAIR and that GLI2 mediates the expression of pro-fibrotic markers downstream of Notch.


Subject(s)
RNA, Long Noncoding , Receptors, Notch , Scleroderma, Systemic , Signal Transduction , Zinc Finger Protein Gli2 , Adult , Fibroblasts/pathology , Fibrosis , Hedgehog Proteins , Humans , Nuclear Proteins , RNA, Long Noncoding/genetics , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/pathology , Zinc Finger Protein Gli2/genetics
13.
PLoS Pathog ; 16(6): e1008624, 2020 06.
Article in English | MEDLINE | ID: mdl-32555725

ABSTRACT

Human papillomaviruses (HPV) are a major cause of malignancy worldwide. They are the aetiological agents of almost all cervical cancers as well as a sub-set of other anogenital and head and neck cancers. Hijacking of host cellular pathways is essential for virus pathogenesis; however, a major challenge remains to identify key host targets and to define their contribution to HPV-driven malignancy. The Hippo pathway regulates epithelial homeostasis by down-regulating the function of the transcription factor YAP. Increased YAP expression has been observed in cervical cancer but the mechanisms driving this increase remain unclear. We found significant down-regulation of the master Hippo regulatory kinase STK4 (also termed MST1) in cervical disease samples and cervical cancer cell lines compared with healthy controls. Re-introduction of STK4 inhibited the proliferation of HPV positive cervical cells and this corresponded with decreased YAP nuclear localization and decreased YAP-dependent gene expression. The HPV E6 and E7 oncoproteins maintained low STK4 expression in cervical cancer cells by upregulating the oncomiR miR-18a, which directly targeted the STK4 mRNA 3'UTR. Interestingly, miR-18a knockdown increased STK4 expression and activated the Hippo pathway, significantly reducing cervical cancer cell proliferation. Our results identify STK4 as a key cervical cancer tumour suppressor, which is targeted via miR-18a in HPV positive tumours. Our study indicates that activation of the Hippo pathway may offer a therapeutically beneficial option for cervical cancer treatment.


Subject(s)
Cell Transformation, Viral , MicroRNAs/metabolism , Papillomaviridae/metabolism , Papillomavirus Infections/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Uterine Cervical Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , MicroRNAs/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Protein Serine-Threonine Kinases/genetics , RNA, Neoplasm/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , YAP-Signaling Proteins
14.
Antiviral Res ; 178: 104778, 2020 06.
Article in English | MEDLINE | ID: mdl-32229236

ABSTRACT

BK polyomavirus (BKPyV) is a ubiquitous pathogen in the human population that is asymptomatic in healthy individuals, but can be life-threatening in those undergoing kidney transplant. To-date, no vaccines or anti-viral therapies are available to treat human BKPyV infections. New therapeutic strategies are urgently required. In this study, using a rational pharmacological screening regimen of known ion channel modulating compounds, we show that BKPyV requires cystic fibrosis transmembrane conductance regulator (CFTR) activity to infect primary renal proximal tubular epithelial cells. Disrupting CFTR function through treatment with the clinically available drug glibenclamide, the CFTR inhibitor CFTR172, or CFTR-silencing, all reduced BKPyV infection. Specifically, time of addition assays and the assessment of the exposure of VP2/VP3 minor capsid proteins indicated a role for CFTR during BKPyV transport to the endoplasmic reticulum, an essential step during the early stages of BKPyV infection. We thus establish CFTR as an important host-factor in the BKPyV life cycle and reveal CFTR modulators as potential anti-BKPyV therapies.


Subject(s)
Antiviral Agents/pharmacology , BK Virus/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Glyburide/pharmacology , BK Virus/physiology , Capsid Proteins/metabolism , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , KATP Channels/antagonists & inhibitors , KATP Channels/metabolism , Kidney Tubules, Proximal , Potassium Channel Blockers/pharmacology , Urothelium/cytology , Urothelium/virology , Virus Replication
15.
Ann Rheum Dis ; 79(4): 507-517, 2020 04.
Article in English | MEDLINE | ID: mdl-32041748

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is characterised by autoimmune activation, tissue and vascular fibrosis in the skin and internal organs. Tissue fibrosis is driven by myofibroblasts, that are known to maintain their phenotype in vitro, which is associated with epigenetically driven trimethylation of lysine 27 of histone 3 (H3K27me3). METHODS: Full-thickness skin biopsies were surgically obtained from the forearms of 12 adult patients with SSc of recent onset. Fibroblasts were isolated and cultured in monolayers and protein and RNA extracted. HOX transcript antisense RNA (HOTAIR) was expressed in healthy dermal fibroblasts by lentiviral induction employing a vector containing the specific sequence. Gamma secretase inhibitors were employed to block Notch signalling. Enhancer of zeste 2 (EZH2) was blocked with GSK126 inhibitor. RESULTS: SSc myofibroblasts in vitro and SSc skin biopsies in vivo display high levels of HOTAIR, a scaffold long non-coding RNA known to direct the histone methyltransferase EZH2 to induce H3K27me3 in specific target genes. Overexpression of HOTAIR in dermal fibroblasts induced EZH2-dependent increase in collagen and α-SMA expression in vitro, as well as repression of miRNA-34A expression and consequent NOTCH pathway activation. Consistent with these findings, we show that SSc dermal fibroblast display decreased levels of miRNA-34a in vitro. Further, EZH2 inhibition rescued miRNA-34a levels and mitigated the profibrotic phenotype of both SSc and HOTAIR overexpressing fibroblasts in vitro. CONCLUSIONS: Our data indicate that the EZH2-dependent epigenetic phenotype of myofibroblasts is driven by HOTAIR and is linked to miRNA-34a repression-dependent activation of NOTCH signalling.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Fibroblasts/metabolism , MicroRNAs/metabolism , Myofibroblasts/metabolism , RNA, Long Noncoding/metabolism , Receptors, Notch/metabolism , Scleroderma, Systemic/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Epigenesis, Genetic , Fibrosis , Histone Code , Humans , Indoles/pharmacology , Phenotype , Pyridones/pharmacology , Receptors, Notch/antagonists & inhibitors , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Signal Transduction , Skin/cytology , Skin/metabolism , Skin/pathology
16.
Antiviral Res ; 158: 113-121, 2018 10.
Article in English | MEDLINE | ID: mdl-30096339

ABSTRACT

Despite the availability of prophylactic vaccines the burden of human papillomavirus (HPV) associated malignancy remains high and there is a need to develop additional therapeutic strategies to complement vaccination. We have previously shown that the poorly characterised E5 oncoprotein forms a virus-coded ion channel or viroporin that was sensitive to the amantadine derivative rimantadine. We now demonstrate that alkylated imino sugars, which have antiviral activity against a number of viruses, inhibit E5 channel activity in vitro. Using molecular modelling we predict that imino sugars intercalate between E5 protomers to prevent channel oligomerisation. We explored the ability of these viroporin inhibitors to block E5-mediated activation of mitogenic signalling in keratinocytes. Treatment with either rimantadine or imino sugars prevented ERK-MAPK phosphorylation and reduced cyclin B1 expression in cells expressing E5 from a number of high-risk HPV types. Moreover, viroporin inhibitors also reduced ERK-MAPK activation and cyclin B1 expression in differentiating primary human keratinocytes containing high-risk HPV18. These observations provide evidence of a key role for E5 viroporin function during the HPV life cycle. Viroporin inhibitors could be utilised for stratified treatment of HPV associated tumours prior to virus integration, or as true antiviral therapies to eliminate virus prior to malignant transformation.


Subject(s)
Antiviral Agents/pharmacology , Imino Sugars/pharmacology , Ion Channels/antagonists & inhibitors , Papillomaviridae/drug effects , Cell Line , Cyclin B1/metabolism , Humans , Keratinocytes , MAP Kinase Signaling System/drug effects , Oncogene Proteins, Viral/antagonists & inhibitors , Papillomavirus Infections/virology , Phosphorylation , Rimantadine/pharmacology , Signal Transduction , Viral Proteins/antagonists & inhibitors
17.
PLoS Pathog ; 14(4): e1006975, 2018 04.
Article in English | MEDLINE | ID: mdl-29630659

ABSTRACT

Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Human papillomavirus 18/physiology , Keratinocytes/virology , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , STAT3 Transcription Factor/metabolism , Virus Replication/physiology , Case-Control Studies , Cells, Cultured , Female , Genome, Viral , Host-Pathogen Interactions , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Phosphorylation , Squamous Intraepithelial Lesions of the Cervix/metabolism , Squamous Intraepithelial Lesions of the Cervix/pathology , Squamous Intraepithelial Lesions of the Cervix/virology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology
18.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29093086

ABSTRACT

Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of ß1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC.IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds upon our previous observations, which demonstrated that the MCPyV ST antigen enhances cell motility, providing a potential link between MCPyV protein expression and the highly metastatic nature of MCC. Here, we show that MCPyV ST remodels the actin cytoskeleton, promoting the formation of filopodia, which is essential for MCPyV ST-induced cell motility, and we also implicate the activity of specific Rho family GTPases, Cdc42 and RhoA, in these processes. Moreover, we describe a novel mechanism for the activation of Rho-GTPases and the cell motility pathway due to the interaction between MCPyV ST and the cellular phosphatase catalytic subunit PP4C, which leads to the specific dephosphorylation of ß1 integrin. These findings may therefore provide novel strategies for therapeutic intervention for disseminated MCC.


Subject(s)
Antigens, Viral, Tumor/immunology , Cell Movement , Merkel cell polyomavirus/physiology , Pseudopodia/metabolism , Pseudopodia/virology , rho GTP-Binding Proteins/metabolism , Actins/metabolism , Antigens, Viral, Tumor/genetics , Carcinoma, Merkel Cell/virology , Gene Expression , Humans , Microfilament Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Polyomavirus Infections/virology , Protein Binding , Tumor Virus Infections/virology
19.
Oncotarget ; 8(61): 103581-103600, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262586

ABSTRACT

Deregulation of proliferation and differentiation-dependent signalling pathways is a hallmark of human papillomavirus (HPV) infection. Although the manipulation of these pathways by E6 and E7 has been extensively studied, controversies surround the role of the E5 oncoprotein during a productive virus life cycle. By integrating primary keratinocytes harbouring wild type or E5 knockout HPV18 genomes with pharmacological and gain/loss of function models, this study aimed to provide molecular information about the role of E5 in epithelial proliferation and differentiation. We show that E5 contributes to cell cycle progression and unscheduled host DNA synthesis in differentiating keratinocytes. E5 function correlates with increased EGFR activation in differentiating cells and blockade of this pathway impairs differentiation-dependent cell cycle progression of HPV18 containing cells. Our findings provide a functional requirement of enhanced EGFR signalling for suprabasal cellular DNA synthesis during the virus life cycle. They also reveal an unrecognised contribution of E5 towards the impaired keratinocyte differentiation observed during a productive HPV infection. E5 suppresses a signalling axis consisting of the keratinocyte growth factor receptor (KGFR) pathway. Inhibition of this pathway compensates for the loss of E5 in knockout cells and re-instates the delay in differentiation. The negative regulation of KGFR involves suppression by the EGFR pathway. Thus our data reveal an unappreciated role for E5-mediated EGFR signalling in orchestrating the balance between proliferation and differentiation in suprabasal cells.

20.
Sci Rep ; 6: 24880, 2016 04 22.
Article in English | MEDLINE | ID: mdl-27101808

ABSTRACT

The interleukin-36 receptor antagonist (IL-36Ra) which regulates IL-36α, -ß and -γ is linked to psoriatic inflammation, especially loss-of-function mutations in pustular psoriasis subtypes. As observed with other IL-1 superfamily proteins, the IL-36 members require N-terminal cleavage for full biological activity but the mechanisms of IL-36Ra activation remain poorly defined. Using different blood leukocyte and skin resident cell preparations, and recombinant proteins, we have identified that neutrophil elastase, but not other neutrophil derived proteases, cleaves IL-36Ra into its highly active antagonistic form. The activity of this processed form of IL-36Ra was confirmed in human primary dermal fibroblasts and keratinocytes and in skin equivalents. A significant dose dependent reduction of IL-36γ induced IL-8 and chemokine ligand 20 (CCL20) levels were detected following addition of the cleaved IL-36Ra compared to full length IL-36Ra. By activating IL-36Ra, the neutrophil derived protease can inhibit IL-36 induced chemokine production, including IL-8 and CCL20, and reduce further inflammatory cell infiltration. These findings strongly indicate neutrophil elastase to be a key enzyme in the biological function of IL-36Ra and that neutrophils can play a regulatory role in psoriatic inflammation with regard to balancing the pro-inflammatory activity of IL-36.


Subject(s)
Anti-Inflammatory Agents/metabolism , Interleukins/metabolism , Leukocyte Elastase/metabolism , Proteolysis , Cells, Cultured , Fibroblasts/enzymology , Humans , Keratinocytes/enzymology , Skin/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...