Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19624, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608174

ABSTRACT

The putative ferricrocin synthetase gene ferS in the fungal entomopathogen Beauveria bassiana BCC 2660 was identified and characterized. The 14,445-bp ferS encodes a multimodular nonribosomal siderophore synthetase tightly clustered with Fusarium graminearum ferricrocin synthetase. Functional analysis of this gene was performed by disruption with the bar cassette. ΔferS mutants were verified by Southern and PCR analyses. HPLC and TLC analyses of crude extracts indicated that biosynthesis of ferricrocin was abolished in ΔferS. Insect bioassays surprisingly indicated that ΔferS killed the Spodoptera exigua larvae faster (LT50 59 h) than wild type (66 h). Growth and developmental assays of the mutant and wild type demonstrated that ΔferS had a significant increase in germination under iron depletion and radial growth and a decrease in conidiation. Mitotracker staining showed that the mitochondrial activity was enriched in ΔferS under both iron excess and iron depletion. Comparative transcriptomes between wild type and ΔferS indicated that the mutant was increased in the expression of eight cytochrome P450 genes and those in iron homeostasis, ferroptosis, oxidative stress response, ergosterol biosynthesis, and TCA cycle, compared to wild type. Our data suggested that ΔferS sensed the iron excess and the oxidative stress and, in turn, was up-regulated in the antioxidant-related genes and those in ergosterol biosynthesis and TCA cycle. These increased biological pathways help ΔferS grow and germinate faster than the wild type and caused higher insect mortality than the wild type in the early phase of infection.


Subject(s)
Beauveria/growth & development , Beauveria/metabolism , Ferrichrome/analogs & derivatives , Host-Pathogen Interactions , Insecta/microbiology , Iron/metabolism , Animals , Beauveria/classification , Beauveria/pathogenicity , Computational Biology , Ferrichrome/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Homeostasis , Mutation , Oxidative Stress , Phylogeny , Virulence/genetics
2.
Insects ; 13(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35055885

ABSTRACT

Five isolates of Metarhizium sp. were evaluated for their pathogenicity against the spider mite (Tetranychus truncatus Ehara) (Acari: Tetranychidae) and Metarhizium sp. BCC 4849 resulted in the highest mortality (82%) on the 5th day post-inoculation (DPI). Subsequent insect bioassay data indicated similar high virulence against five other insects: African red mites (Eutetranychus africanus Tucker) (Acari: Tetranychidae), bean aphid (Aphis craccivora Koch) (Hemiptera: Aphididae), cassava mealybug (Phenacoccus manihoti Matile-Ferrero) (Hemiptera: Pseudococcidae), sweet potato weevil (Cylas formicarius Fabricius) (Coleoptera: Brentidae), and oriental fruit fly (Bactrocera dorsalis Hendel) (Diptera: Tephritidae), at mortalities of 92-99%, on 3rd-6th DPI, and in laboratory conditions. The pathogenicity assay against E. africanus in hemp plants under greenhouse conditions indicated 85-100% insect mortality on 10th DPI using the fungus alone or in combination with synthetic acaricide. Genome sequencing of Metarhizium sp. BCC 4849 revealed the high abundance of proteins associated with zinc-, heme-, and iron-binding; oxidation-reduction; and transmembrane transport, implicating its versatile mode of interaction with the environment and adaptation to various ion homeostasis. The light and scanning electron microscopy indicated that at 24 h post inoculation (PI), adhesion and appressorial formation occurred, notably near the setae. Most infected mites had stopped moving and started dying by 48-72 h PI. Elongated hyphal bodies and oval blastospores were detected in the legs. At 96-120 h PI or longer, dense mycelia and conidial mass had colonized the interior and exterior of dead mites, primarily at the bottom than the upper part. The shelf-life study also indicated that conidial formulation combined with an oxygen-moisture absorber markedly enhanced the viability and germination after storage at 35 °C for four months. The fungus was tested as safe for humans and animals, according to our toxicological assays.

3.
Sci Rep ; 10(1): 12630, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32724143

ABSTRACT

Entomopathogenic fungi utilize specific secondary metabolites to defend against insect immunity, thereby enabling colonization of their specific hosts. We are particularly interested in the polyketide synthesis gene pks15, which is involved in metabolite production, and its role in fungal virulence. Targeted disruption of pks15 followed by genetic complementation with a functional copy of the gene would allow for functional characterization of this secondary metabolite biosynthesis gene. Using a Beauveria bassiana ∆pks15 mutant previously disrupted by a bialophos-resistance (bar) cassette, we report here an in-cis complementation at bar cassette using CRISPR/Cas9 gene editing. A bar-specific short guide RNA was used to target and cause a double-strand break in bar, and a donor DNA carrying a wild-type copy of pks15 was co-transformed with the guide RNA. Isolate G6 of ∆pks15 complemented with pks15 was obtained and verified by PCR, Southern analyses and DNA sequencing. Compared to ∆pks15 which showed a marked reduction in sporulation and insect virulence, the complementation in G6 restored with insect virulence, sporulation and conidial germination to wild-type levels. Atomic force and scanning electron microscopy revealed that G6 and wild-type conidial wall surfaces possessed the characteristic rodlet bundles and rough surface while ∆pks15 walls lacked the bundles and were relatively smoother. Conidia of ∆pks15 were larger and more elongated than that of G6 and the wild type, indicating changes in their cell wall organization. Our data indicate that PKS15 and its metabolite are likely not only important for fungal virulence and asexual reproduction, but also cell wall formation.


Subject(s)
Beauveria/cytology , Beauveria/enzymology , Cell Wall/enzymology , Fungal Proteins/metabolism , Polyketide Synthases/metabolism , Animals , Base Sequence , Beauveria/isolation & purification , Beauveria/pathogenicity , CRISPR-Cas Systems/genetics , Cell Wall/ultrastructure , DNA End-Joining Repair/genetics , Fluorescence , Gene Editing , Genetic Complementation Test , Genetic Loci , Insecta/microbiology , Microbial Viability , Mutagenesis/genetics , Mutation/genetics , Phagocytosis , Spores, Fungal/physiology , Spores, Fungal/ultrastructure
4.
Fungal Biol ; 121(8): 664-675, 2017 08.
Article in English | MEDLINE | ID: mdl-28705395

ABSTRACT

The reducing clade III polyketide synthase genes, including pks15, are highly conserved among entomopathogenic fungi. To examine the function of pks15, we used targeted disruption to investigate the impact of Beauveria bassiana pks15 on insect pathogenesis. Southern analysis verified that the Δpks15 mutant was disrupted by a single integration of the transformation cassette at the pks15 locus. The Δpks15 mutant had a slight reduction in radial growth, and it produced fewer spores. Our insect bioassays indicated the Δpks15 mutant to be significantly reduced in virulence against beet armyworms compared to wild type (WT), which could be partially accounted for by its markedly decreased ability to survive phagocytosis. Total haemocyte count decreased sharply by 50-fold from days 1-3 post-inoculation in insects infected with WT, compared to a 5-fold decrease in the Δpks15 mutant. The mutant also produced fewer hemolymph hyphal bodies than WT by 3-fold. In co-culture studies with amoebae that have phagocytic ability similar to that of insect haemocytes, at 48 h the mortality rate of amoebae engulfing Δpks15 decreased by 72 %, and Δpks15 CFU decreased by 83 % compared to co-culture with WT. Thus, the Δpks15 mutant had a reduced ability to cope with phagocytosis and highly reduced virulence in an insect host. These data elucidate a mechanism of insect pathogenesis associated with polyketide biosynthesis.


Subject(s)
Beauveria/genetics , Beauveria/pathogenicity , Gene Deletion , Microbial Viability , Phagocytes/microbiology , Polyketide Synthases/metabolism , Virulence Factors/metabolism , Animals , Beauveria/growth & development , Biological Assay , Blotting, Southern , DNA, Fungal/genetics , Insecta , Mutagenesis, Insertional , Polyketide Synthases/genetics , Survival Analysis , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...