Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 13(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201663

ABSTRACT

The kinetics of water transport into tablets, and how it can be controlled by the formulation as well as the tablet microstructure, are of central importance in order to design and control the dissolution and drug release process, especially for immediate release tablets. This research employed terahertz pulsed imaging to measure the process of water penetrating through tablets using a flow cell. Tablets were prepared over a range of porosity between 10% to 20%. The formulations consist of two drugs (MK-8408: ruzasvir as a spray dried intermediate, and MK-3682: uprifosbuvir as a crystalline drug substance) and NaCl (0% to 20%) at varying levels of concentrations as well as other excipients. A power-law model is found to fit the liquid penetration exceptionally well (average R2>0.995). For each formulation, the rate of water penetration, extent of swelling and the USP dissolution rate were compared. A factorial analysis then revealed that the tablet porosity was the dominating factor for both liquid penetration and dissolution. NaCl more significantly influenced liquid penetration due to osmotic driving force as well as gelling suppression, but there appears to be little difference when NaCl loading in the formulation increases from 5% to 10%. The level of spray dried intermediate was observed to further limit the release of API in dissolution.

2.
J Pharm Sci ; 109(11): 3360-3369, 2020 11.
Article in English | MEDLINE | ID: mdl-32726600

ABSTRACT

Pharmaceutical scientists are often asked to assess the impact of modifications to the illumination in the manufacturing and product packaging environment on product quality. To assess the impact of switching light sources, four model compounds were exposed to standard fluorescent light, LED, and "yellow light" and the extent of drug photodegradation was determined. Photodegradation under LED light is generally reduced compared to fluorescent light and is often predictable if the UV-Vis absorption spectrum of the active pharmaceutical ingredient (API) and the spectral power distribution emitted by the various light sources overlap. However, lack of noticeable spectral overlap does not ensure absence of API photodegradation and may require additional assessment for selection of appropriate lighting conditions. A detailed evaluation of the API and solid formulation absorbance was performed to assess degradation risk for Compound A and Vitamin D3 when exposed to LED light. The light budget was established for Compound A, spanning all stages of the manufacturing process, under different illumination conditions to enable a complex supply chain. The results also demonstrate that while LEDs used in manufacturing areas are generally "better" compared to fluorescent lights, they are not replacing yellow lights for compounds sensitive to visible light.


Subject(s)
Light , Pharmaceutical Preparations , Drug Stability , Lighting , Photolysis
3.
J Pharm Sci ; 96(1): 106-16, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16917844

ABSTRACT

While the physical properties of pharmaceutical excipients have been well characterized, impurities that may influence the chemical stability of formulated drug product have not been well studied. In this work, the hydroperoxide (HPO) impurity levels of common pharmaceutical excipients are measured and presented for both soluble and insoluble excipients. Povidone, polysorbate 80 (PS80), polyethylene glycol (PEG) 400, and hydroxypropyl cellulose (HPC) were found to contain substantial concentrations of HPOs with significant lot-to-lot and manufacturer-to-manufacturer variation. Much lower HPO levels were found in the common fillers, like microcrystalline cellulose and lactose, and in high molecular weight PEG, medium chain glyceride (MCG), and poloxamer. The findings are discussed within the context of HPO-mediated oxidation and formulating drug substance sensitive to oxidation. Of the four excipients with substantial HPO levels, povidone, PEG 400, and HPC contain a mixture of hydrogen peroxide and organic HPOs while PS80 contains predominantly organic HPOs. The implications of these findings are discussed with respect to the known manufacturing processes and chemistry of HPO reactivity and degradation kinetics. Defining critical HPO limits for excipients should be driven by the chemistry of a specific drug substance or product and can only be defined within this context.


Subject(s)
Drug Contamination , Excipients/chemistry , Hydrogen Peroxide/analysis , Cellulose/analogs & derivatives , Cellulose/chemistry , Chemistry, Pharmaceutical , Dosage Forms , Drug Stability , Excipients/standards , Glycerides/chemistry , Hydrogen Peroxide/chemistry , Lactose/chemistry , Mannitol/chemistry , Peroxides/analysis , Pharmaceutical Preparations/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Polysorbates/chemistry , Povidone/chemistry , Quality Control , Solubility , Technology, Pharmaceutical/methods
4.
J Pharm Biomed Anal ; 35(4): 779-88, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15193722

ABSTRACT

The purpose of this study was to qualitatively and quantitatively determine potential cellulose acetate butyrate (CAB) extractables in a way to meaningfully predict the in vivo exposure resulting from clinical administration. Extractions of CAB-381-20 were performed in several solvent systems, consistently resulting in the detection of three extractables. The extractables have been identified as acetic acid, butyric acid, and E-2-ethyl-2-hexenoic acid (E-EHA) by LC/UV, LC/MS and NMR. Extraction studies of CAB powders in acetonitrile/phosphate buffer demonstrated quantitative extraction in 1 h for acetic acid (approximately 150 microg/g), butyric acid (approximately 200 microg/g), and EHA (approximately 20 microg/g). Subsequently, extraction studies for CAB powders and coated tablets in USP simulated gastric and intestinal fluids were performed to evaluate potential in vivo exposure. Similarly, acetic and butyric acids were quantitatively extracted from CAB-381-20 powder after 24 h exposure in both USP simulated fluids. The amounts of EHA extracted from CAB powder after 24 h were determined to be 2 and 16 microg/g in USP simulated gastric and intestinal fluids, respectively. After 24 h exposure in USP simulated fluids, the maximum amount of EHA extracted corresponds to < 0.3 microg of EHA per tablet. Pepsin and pancreatin in USP simulated fluids had no effect on EHA extraction and quantitation.


Subject(s)
Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/isolation & purification , Statistics as Topic
5.
PDA J Pharm Sci Technol ; 57(5): 351-68, 2003.
Article in English | MEDLINE | ID: mdl-14677628

ABSTRACT

A phenyl ether-based drug substance exhibits photochemical degradation in citrate buffers with both ultraviolet (300-450 nm range) and visible light (380-700 nm range) exposure, even though the drug molecule itself is non-light absorbing at wavelengths > 300 nm. The major contributors to the observed photosensitivity are the citrate buffer, parts per billion (ppb) levels of iron, oxygen, and light exposure level. Although a primary phenol photodegradate is generated, there are at least eight other species formed as well. The molecular weights and abundance of these species suggest that the product distribution is generated by the reaction of hydroxyl radicals with the drug substance. The generation of the primary photodegradate is linearly proportional to the light exposure amount for a fixed concentration of iron present in the formulation. Conversely, the amount of photodegradation is also nearly linear with iron concentration (through 200 ppb levels) for a fixed amount of light exposure. The proposed mechanism for the photochemical generation of hydroxyl radicals has precedence in the literature for similar combinations of iron, oxygen, carboxylate buffers, and light. Since the buffer salt and oxygen molecular equivalents in the product are significantly higher than the ppb levels of iron employed and more difficult to remove, the control of the extent of photodegradation largely rests on the control of trace levels of iron in the formulated product and control of light exposure. Exposure of drug solutions to a series of transition metals clearly indicates that iron is the key transition metal involved in the observed photochemistry. At manufacture, the primary source of iron is the raw materials (water, drug or excipients) used in the formulation. The level of iron for product stored in glass increases with sample age and can be attributed to iron leaching from borosilicate glass vials. Consideration of adequate light control during the manufacturing and packaging processes will be discussed and can only be defined as a function of the amount of iron present at the time of manufacture in the formulation. The generality of this chemistry to other drug candidates and in the presence of other common buffers will also be discussed.


Subject(s)
Drug Packaging , Drug Stability , Excipients , Light , Pharmaceutical Solutions/chemistry , Iron/chemistry , Iron/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...