Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 193: 108763, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38141965

ABSTRACT

Despite reading being an essential and almost universal skill in the developed world, reading proficiency varies substantially from person to person. To study why, the fMRI field is beginning to turn from single-word or nonword reading tasks to naturalistic stimuli like connected text and listening to stories. To study reading development in children just beginning to read, listening to stories is an appropriate paradigm because speech perception and phonological processing are important for, and are predictors of, reading proficiency. Our study examined the relationship between behavioral reading-related skills and the neural response to listening to stories in the fMRI environment. Functional MRI were gathered in a 3T TIM-Trio scanner. During the fMRI scan, children aged approximately 7 years listened to professionally narrated common short stories and answered comprehension questions following the narration. Analyses of the data used inter-subject correlation (ISC), and representational similarity analysis (RSA). Our primary finding is that ISC reveals areas of increased synchrony in both high- and low-performing emergent readers previously implicated in reading ability/disability. Of particular interest are that several previously identified brain regions (medial temporal gyrus (MTG), inferior frontal gyrus (IFG), inferior temporal gyrus (ITG)) were found to "synchronize" across higher reading ability participants, while lower reading ability participants had idiosyncratic activation patterns in these regions. Additionally, two regions (superior frontal gyrus (SFG) and another portion of ITG) were recruited by all participants, but their specific timecourse of activation depended on reading performance. These analyses support the idea that different brain regions involved in reading follow different developmental trajectories that correlate with reading proficiency on a spectrum rather than the usual dichotomy of poor readers versus strong readers.


Subject(s)
Dyslexia , Learning Disabilities , Child , Humans , Reading , Magnetic Resonance Imaging , Brain Mapping , Brain/physiology
2.
NPJ Digit Med ; 6(1): 79, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106034

ABSTRACT

Brain stimulation (BStim) encompasses multiple modalities (e.g., deep brain stimulation, responsive neurostimulation) that utilize electrodes implanted in deep brain structures to treat neurological disorders. Currently, BStim is primarily used to treat movement disorders such as Parkinson's, though indications are expanding to include neuropsychiatric disorders like depression and schizophrenia. Traditional BStim systems are "open-loop" and deliver constant electrical stimulation based on manually-determined parameters. Advancements in BStim have enabled development of "closed-loop" systems that analyze neural biomarkers (e.g., local field potentials in the sub-thalamic nucleus) and adjust electrical modulation in a dynamic, patient-specific, and energy efficient manner. These closed-loop systems enable real-time, context-specific stimulation adjustment to reduce symptom burden. Machine learning (ML) has emerged as a vital component in designing these closed-loop systems as ML models can predict / identify presence of disease symptoms based on neural activity and adaptively learn to modulate stimulation. We queried the US National Library of Medicine PubMed database to understand the role of ML in developing closed-loop BStim systems to treat epilepsy, movement disorders, and neuropsychiatric disorders. Both neural and non-neural network ML algorithms have successfully been leveraged to create closed-loop systems that perform comparably to open-loop systems. For disorders in which the underlying neural pathophysiology is relatively well understood (e.g., Parkinson's, essential tremor), most work has involved refining ML models that can classify neural signals as aberrant or normal. The same is seen for epilepsy, where most current research has focused on identifying optimal ML model design and integrating closed-loop systems into existing devices. For neuropsychiatric disorders, where the underlying pathologic neural circuitry is still being investigated, research is focused on identifying biomarkers (e.g., local field potentials from brain nuclei) that ML models can use to identify onset of symptoms and stratify severity of disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...