Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Inorg Chem ; 61(35): 13956-13967, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36000984

ABSTRACT

Geometric isomers of mononuclear ruthenium(II) complexes, distal-/proximal-[Ru(tpy)(dpda)Cl]+ (d-/p-RuCl, tpy = 2,2':6',2″-terpyridine, dpda = 2,7-bis(2-pyridyl)-1,8-diazaanthracene), were newly synthesized to comprehensively investigate the geometric and electronic structures and distinctive aspects in various reactions between isomers. The ultraviolet (UV)-visible absorption spectra of d-/p-RuCl isomers show intense bands for metal-to-ligand charge transfer (MLCT) at close wavelengths of 576 and 573 nm, respectively. However, time-dependent density functional theory (TD-DFT) calculations suggest that the MLCT transition of d-RuCl involves mainly single transitions to the π* orbital of the dpda ligand in contrast to mixing of the π* orbitals of the dpda and tpy ligands for p-RuCl. The aquation reaction (1.5 × 10-3 s-1) of p-RuCl to yield proximal-[Ru(tpy)(dpda)(OH2)]2+ (p-RuH2O) is faster than that (5.3 × 10-6 s-1) of d-RuCl in D2O/CD3OD (4:1 v/v) by three orders of magnitude, which resulted from the longer Ru-Cl bond by 0.017 Å and the distorted angle (100.2(3)°) of Cl-Ru-N (a nitrogen of dpda, being on a tpy plane) due to the steric repulsion between Cl and dpda for p-RuCl. Electrochemical measurements showed that d-RuH2O undergoes a 2-step oxidation reaction of 1H+-coupled 1e- processes of RuII-OH2/RuIII-OH and RuIII-OH/RuIV═O at pH 1-9, whereas p-RuH2O undergoes a 1-step oxidation reaction of a 2H+-coupled 2e- process of RuII-OH2/RuIV═O in the pH range of pH 1-10. The irreversible photoisomerization from d-RuH2O to p-RuH2O was observed in aqueous solution with an internal quantum yield (Φ) of 5.4 × 10-3% at 520 nm, which is lower compared with Φ = 1.1-2.1% of mononuclear Ru(II) aquo complexes with similar bidentate ligands instead of dpda by three orders of magnitude. This is possibly ascribed to the faster nonradiative decay rate from the excited 3MLCT state to the ground state for d-RuH2O due to the lower π* level of dpda ligands according to the energy-gap law: the rate decreases exponentially with the increasing energy gap.


Subject(s)
Ruthenium , Ligands , Light , Oxidation-Reduction , Protons , Ruthenium/chemistry
2.
Inorg Chem ; 58(19): 12716-12723, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31549813

ABSTRACT

[Ru(Rtpy)(bpy)(H2O)]2+ (1R; bpy = 2,2'-bipyridine, and Rtpy = 2,2':6',2″-terpyridine derivatives) complexes with a variety of 4'-substituent groups on Rtpy were synthesized and characterized to reveal the effects of substituents on their structures, physicochemical properties, and catalytic activities for water oxidation. The geometric structures of 1R are not considerably influenced by the electron-donating ability of the 4'-substituent groups on Rtpy. Similar multistep proton-coupled electron transfer reactions were observed for 1R, and the redox potentials for each oxidation step tended to decrease with an increase in the electron-donating ability of the substituent, which is explained by the increased electron density on the Ru center by electron-donating groups, stabilizing the positive charge that builds up upon oxidation. This is consistent with the red-shift of the absorption bands around 480 nm assigned to the metal-to-ligand charge transfer transition for 1R due to the increased d orbital energy level of the Ru center. The turnover frequency (kO2) of 1R for water oxidation catalysis, however, depended greatly on the Rtpy ligands, varying from 0.05 × 10-2 to 44 × 10-2 s-1 (as the highest kO2 was observed for R = ethoxy) by a factor of 880. A critical electron-donating ability of the 4'-substituent groups with a narrow range of Hammett constants (σp = -0.27 to -0.24) found for the highest kO2 values is valuable for understanding the great difficulty in the search for efficient water oxidation catalysts. On another front, the kO2 values increased with a decrease in the redox potentials of RuIV═O/RuV═O for 1R, indicating that the potential of formation of RuV═O species for 1R is crucial for water oxidation catalysis under the employed conditions.

3.
Inorg Chem ; 56(17): 10235-10246, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28836776

ABSTRACT

proximal,proximal-(p,p)-[RuII2(tpy)2LXY]n+ (tpy = 2,2';6',2″-terpyridine, L = 5-phenyl-2,8-di-2-pyridyl-1,9,10-anthyridine, and X and Y = other coordination sites) yields the structurally and functionally unusual RuII(µ-OH)RuII core, which is capable of catalyzing water oxidation with key water insertion to the core (Inorg. Chem. 2015, 54, 7627). Herein, we studied a sequence of bridging-ligand substitution among p,p-[Ru2(tpy)2L(µ-Cl)]3+ (Ru2(µ-Cl)), p,p-[Ru2(tpy)2L(µ-OH)]3+ (Ru2(µ-OH)), p,p-[Ru2(tpy)2L(OH)(OH2)]3+ (Ru2(OH)(OH2)), and p,p-[Ru2(tpy)2L(OH)2]2+ (Ru2(OH)2) in aqueous solution. Ru2(µ-Cl) converted slowly (10-4 s-1) to Ru2(µ-OH), and further Ru2(µ-OH) converted very slowly (10-6 s-1) to Ru2(OH)(OH2) by the insertion of water to reach equilibrium at pH 8.5-12.3. On the basis of density functional theory (DFT) calculations, Ru2(OH)(OH2) was predicted to be thermodynamically stable by 13.3 kJ mol-1 in water compared to Ru2(µ-OH) because of the specially stabilized core structure by multiple hydrogen-bonding interactions involving aquo, hydroxo, and L backbone ligands. The observed rate from Ru2(µ-OH) to Ru2(OH)2 by the insertion of an OH- ion increased linearly with an increase in the OH- concentration from 10 to 100 mM. The water insertion to the core is very slow (∼10-6 s-1) in aqueous solution at pH 8.5-12.3, whereas the insertion of OH- ions is accelerated (10-5-10-4 s-1) above pH 13.4 by 2 orders of magnitude. The kinetic data including activation parameters suggest that the associative mechanism for the insertion of water to the RuII(µ-OH)RuII core of Ru2(µ-OH) at pH 8.5-12.3 alters the interchange mechanism for the insertion of an OH- ion to the core above pH 13.4 because of relatively stronger nucleophilic attack of OH- ions. The hypothesized p,p-[Ru2(tpy)2L(µ-OH2)]4+ and p,p-[Ru2(tpy)2L(OH2)2]4+ formed by protonation from Ru2(µ-OH) and Ru2(OH)(OH2) were predicted to be unstable by 71.3 and 112.4 kJ mol-1 compared to Ru2(µ-OH) and Ru2(OH)(OH2), respectively. The reverse reactions of Ru2(µ-OH), Ru2(OH)(OH2), and Ru2(OH)2 to Ru2(µ-Cl) below pH 5 could be caused by lowering the core charge by protonation of the µ-OH- or OH- ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...