Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 8(1): e0093122, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36722950

ABSTRACT

Viruses infecting marine prokaryotes have a large impact on the diversity and dynamics of their hosts. Model systems suggest that viral infection is frequency dependent and constrained by the virus-host encounter rate. However, it is unclear whether frequency-dependent infection is pervasive among the abundant prokaryotic populations with different temporal dynamics. To address this question, we performed a comparison of prokaryotic and viral communities using 16S rRNA amplicon and virome sequencing based on samples collected monthly for 2 years at a Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and viral community dynamics indicated that the abundance of viruses correlated with that of their predicted host phyla (or classes). Cooccurrence network analysis between abundant prokaryotes and viruses revealed 6,423 cooccurring pairs, suggesting a tight coupling of host and viral abundances and their "one-to-many" correspondence. Although stable dominant species, such as SAR11, showed few cooccurring viruses, a fast succession of their viruses suggests that viruses infecting these populations changed continuously. Our results suggest that frequency-dependent viral infection prevails in coastal marine prokaryotes regardless of host taxa and temporal dynamics. IMPORTANCE There is little room for doubt that viral infection is prevalent among abundant marine prokaryotes regardless of their taxa or growth strategy. However, comprehensive evaluations of viral infections in natural prokaryotic communities are still technically difficult. In this study, we examined viral infection in abundant prokaryotes by monitoring the monthly dynamics of prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay. We compared the community dynamics of viruses with those of their putative hosts based on genome-based in silico host prediction. We observed frequent cooccurrence among the predicted virus-host pairs, suggesting that viral infection is prevalent in abundant prokaryotes regardless of their taxa or temporal dynamics. This likely indicates that frequent lysis of the abundant prokaryotes via viral infection has a considerable contribution to the biogeochemical cycling and maintenance of prokaryotic community diversity.


Subject(s)
Virus Diseases , Viruses , Humans , RNA, Ribosomal, 16S/genetics , Prevalence , Time Factors , Virome , Viruses/genetics
2.
Microbes Environ ; 34(3): 334-339, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31378760

ABSTRACT

Giant viruses of 'Megaviridae' have the ability to widely disperse around the globe. We herein examined 'Megaviridae' communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.


Subject(s)
Ecosystem , Giant Viruses/physiology , Water Microbiology , DNA-Directed DNA Polymerase/genetics , Fresh Water/virology , Geography , Giant Viruses/classification , Giant Viruses/genetics , Giant Viruses/isolation & purification , Metagenome , Phylogeny , Seawater/virology , Viral Proteins/genetics
3.
Viruses ; 10(9)2018 09 13.
Article in English | MEDLINE | ID: mdl-30217078

ABSTRACT

"Megaviridae" is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due to the scarce detection of Megaviridae sequences in metagenomes, as well as the limitation of reference sequences used to design specific primers for this viral group. Here, we propose a set of 82 degenerated primers (referred to as MEGAPRIMER), targeting DNA polymerase genes (polBs) of Megaviridae. MEGAPRIMER was designed based on 921 Megaviridae polBs from sequenced genomes and metagenomes. By applying this primer set to environmental DNA meta-barcoding of a coastal seawater sample, we report 5595 non-singleton operational taxonomic units (OTUs) of Megaviridae at 97% nucleotide sequence identity. The majority of the OTUs were found to form diverse clades, which were phylogenetically distantly phylogenetically related to known viruses such as Mimivirus. The Megaviridae OTUs detected in this study outnumber the giant virus OTUs identified in previous individual studies by more than an order of magnitude. Hence, MEGAPRIMER represents a useful tool to study the diversity of Megaviridae at the population level in natural environments.


Subject(s)
Biodiversity , Giant Viruses/classification , Giant Viruses/genetics , Polymerase Chain Reaction , Seawater/virology , Water Microbiology , Computational Biology/methods , Genome, Viral , Metagenome , Metagenomics/methods , Phylogeny , Polymerase Chain Reaction/methods
4.
ISME J ; 12(12): 3046, 2018 12.
Article in English | MEDLINE | ID: mdl-30068936

ABSTRACT

The original version of this Article contained an error in the main text citations and reference list. These errors have now been corrected in both the PDF and HTML versions of the Article.

5.
ISME J ; 12(5): 1287-1295, 2018 05.
Article in English | MEDLINE | ID: mdl-29382948

ABSTRACT

Viruses infecting microorganisms are ubiquitous and abundant in the ocean. However, it is unclear when and where the numerous viral particles we observe in the sea are produced and whether they are active. To address these questions, we performed time-series analyses of viral metagenomes and microbial metatranscriptomes collected over a period of 24 h at a Japanese coastal site. Through mapping the metatranscriptomic reads on three sets of viral genomes ((i) 878 contigs of Osaka Bay viromes (OBV), (ii) 1766 environmental viral genomes from marine viromes, and (iii) 2429 reference viral genomes), we revealed that all the local OBV contigs were transcribed in the host fraction. This indicates that the majority of viral populations detected in viromes are active, and suggests that virions are rapidly diluted as a result of diffusion, currents, and mixing. Our data further revealed a peak of cyanophage gene expression in the afternoon/dusk followed by an increase of genomes from their virions at night and less-coherent infectious patterns for viruses putatively infecting various groups of heterotrophs. This suggests that cyanophages drive the diel release of cyanobacteria-derived organic matter into the environment and viruses of heterotrophic bacteria might have adapted to the population-specific life cycles of hosts.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Seawater/virology , Bacteriophages/metabolism , Cyanobacteria/virology , Gene Expression Profiling , Japan , Metagenome , Metagenomics , Periodicity , Virion/genetics
6.
mSphere ; 2(2)2017.
Article in English | MEDLINE | ID: mdl-28261669

ABSTRACT

Metagenomics has revealed the existence of numerous uncharacterized viral lineages, which are referred to as viral "dark matter." However, our knowledge regarding viral genomes is biased toward culturable viruses. In this study, we analyzed 1,600 (1,352 nonredundant) complete double-stranded DNA viral genomes (10 to 211 kb) assembled from 52 marine viromes. Together with 244 previously reported uncultured viral genomes, a genome-wide comparison delineated 617 genus-level operational taxonomic units (OTUs) for these environmental viral genomes (EVGs). Of these, 600 OTUs contained no representatives from known viruses, thus putatively corresponding to novel viral genera. Predicted hosts of the EVGs included major groups of marine prokaryotes, such as marine group II Euryarchaeota and SAR86, from which no viruses have been isolated to date, as well as Flavobacteriaceae and SAR116. Our analysis indicates that marine cyanophages are already well represented in genome databases and that one of the EVGs likely represents a new cyanophage lineage. Several EVGs encode many enzymes that appear to function for an efficient utilization of iron-sulfur clusters or to enhance host survival. This suggests that there is a selection pressure on these marine viruses to accumulate genes for specific viral propagation strategies. Finally, we revealed that EVGs contribute to a 4-fold increase in the recruitment of photic-zone viromes compared with the use of current reference viral genomes. IMPORTANCE Viruses are diverse and play significant ecological roles in marine ecosystems. However, our knowledge of genome-level diversity in viruses is biased toward those isolated from few culturable hosts. Here, we determined 1,352 nonredundant complete viral genomes from marine environments. Lifting the uncertainty that clouds short incomplete sequences, whole-genome-wide analysis suggests that these environmental genomes represent hundreds of putative novel viral genera. Predicted hosts include dominant groups of marine bacteria and archaea with no isolated viruses to date. Some of the viral genomes encode many functionally related enzymes, suggesting a strong selection pressure on these marine viruses to control cellular metabolisms by accumulating genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...