Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Life (Basel) ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276290

ABSTRACT

Abscisic acid (ABA) is the most important phytohormone involved in the response to drought stress. Subclass II of SNF1-related kinase 2 (SnRK2) is an important signaling kinase related to ABA signal transduction. It regulates the phosphorylation of the target transcription factors controlling the transcription of a wide range of ABA-responsive genes in Arabidopsis thaliana. The transgenic poplars (Populus tremula × P. tremuloides, clone T89) ectopically overexpressing AtSnRK2.8, encoding a subclass II SnRK2 kinase of A. thaliana, have been engineered but almost no change in its transcriptome was observed. In this study, we evaluated osmotic stress tolerance and stomatal behavior of the transgenic poplars maintained in the netted greenhouse. The transgenic poplars, line S22, showed a significantly higher tolerance to 20% PEG treatment than non-transgenic controls. The stomatal conductance of the transgenic poplars tended to be lower than the non-transgenic control. Microscopic observations of leaf imprints revealed that the transgenic poplars had significantly higher stomatal closures under the stress treatment than the non-transgenic control. In addition, the stomatal index was lower in the transgenic poplars than in the non-transgenic controls regardless of the stress treatment. These results suggested that AtSnRK2.8 is involved in the regulation of stomatal behavior. Furthermore, the transgenic poplars overexpressing AtSnRK2.8 might have improved abiotic stress tolerance through this stomatal regulation.

2.
Sci Rep ; 13(1): 10138, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349519

ABSTRACT

Eucalyptus trees are important for industrial forestry plantations because of their high potential for biomass production, but their susceptibility to damage at low temperatures restricts their plantation areas. In this study, a 6-year field trial of Eucalyptus globulus was conducted in Tsukuba, Japan, which is the northernmost reach of Eucalyptus plantations, and leaf damage was quantitatively monitored over four of six winters. Leaf photosynthetic quantum yield (QY) levels, an indicator of cold stress-induced damage, fluctuated synchronously with temperature in the winters. We performed a maximum likelihood estimation of the regression model explaining leaf QY using training data subsets for the first 3 years. The resulting model explained QY by the number of days when the daily maximum temperature was below 9.5 °C over approximately the last 7 weeks as an explanatory variable. The correlation coefficient and coefficient of determination of prediction by the model between the predicted and observed values were 0.84 and 0.70, respectively. The model was then used to perform two kinds of simulations. Geographical simulations of potential Eucalyptus plantation areas using global meteorological data from more than 5,000 locations around the world successfully predicted an area that generally agreed with the global Eucalyptus plantation distribution reported previously. Another simulation based on meteorological data of the past 70 years suggested that global warming will increase the potential E. globulus plantation area in Japan approximately 1.5-fold over the next 70 years. These results suggest that the model developed herein would be applicable to preliminary predictions of E. globulus cold damage in the field.


Subject(s)
Eucalyptus , Trees , Temperature , Photosynthesis , Cold Temperature
3.
Metabolites ; 13(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37233692

ABSTRACT

Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from Kaempferia parviflora rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of K. parviflora plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of K. parviflora, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.

4.
Plants (Basel) ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771559

ABSTRACT

Promoting neglected and underutilized crop species is a possible solution to deal with the complex challenges of global food security. Chayote is a Neglected and Underutilized Cucurbit Species (NUCuS), which is recognized as a fruit vegetable in Latin America and is widely grown in Asia and Africa. However, basic biological knowledge about the crop is insufficient in scientific sources, especially outside of its center of origin. In this study, limited observations on reproductive characters were conducted, differentiating accessions from Mexico, Japan, and Myanmar. Cytological evaluation among Mexican and Japanese accessions showed that the relative nuclear DNA content is 1.55 ± 0.05 pg, the estimated genome size is 1511 at 2C/Mbp, and the observed mitotic chromosomal number is 2n = 28. The genetic diversity of 21 chayote accessions was also examined using six microsatellite markers. A global low genetic heterozygosity (Ho = 0.286 and He = 0.408) and three genetic groups were detected. The results established the basis to provide insights into chayote arrival history in Asia by looking at the crop's reproductive morphology, cytology, and genetic diversity status outside its origin center. This could help in developing sustainable utilization and conservation programs for chayote.

5.
Transgenic Res ; 31(4-5): 579-591, 2022 10.
Article in English | MEDLINE | ID: mdl-35997870

ABSTRACT

Drought is an abiotic stress that limits plant growth and productivity, and the development of trees with improved drought tolerance is expected to expand potential plantation areas and to promote sustainable development. Previously we reported that transgenic poplars (Populus tremula × P. tremuloides, T89) harboring the stress-responsive galactinol synthase gene, AtGolS2, derived from Arabidopsis thaliana were developed and showed improved drought stress tolerance in laboratory conditions. Herein we report a field trial evaluation of the AtGolS2-transgenic poplars. The rainfall-restricted treatments on the poplars started in late May 2020, 18 months after transplanting to the field, and were performed for 100 days. During these treatments, the leaf injury levels were observed by measuring photosynthetic quantum yields twice a week. Observed leaf injury levels varied in response to soil moisture fluctuation and showed a large difference between transgenic and non-transgenic poplars during the last month. Comparison of the leaf injury levels against three stress classes clustered by the machine learning approach revealed that the transgenic poplars exhibited significant alleviation of leaf injuries in the most severe stress class. The transgenes and transcript levels were stable in the transgenic poplars cultivated in the field conditions. These results indicated that the overexpression of AtGolS2 significantly improved the drought stress tolerance of transgenic poplars not only in the laboratory but also in the field. In future studies, molecular breeding using AtGolS2 will be an effective method for developing practical drought-tolerant forest trees.


Subject(s)
Arabidopsis , Populus , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Galactosyltransferases , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Populus/genetics , Soil , Stress, Physiological/genetics , Trees/genetics , Trees/metabolism
6.
Sci Rep ; 11(1): 6185, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731771

ABSTRACT

Bioprospecting identifies new sources of compounds with actual or potential economic value that come from biodiversity. An analysis was performed regarding bioprospecting purposes in ten genotypes of Sechium spp., through a meta-analysis of 20 information sources considering different variables: five morphological, 19 biochemical, anti-proliferative activity of extracts on five malignant cell lines, and 188 polymorphic bands of amplified fragment length polymorphisms, were used in order to identify the most relevant variables for the design of genetic interbreeding. Significant relationships between morphological and biochemical characters and anti-proliferative activity in cell lines were obtained, with five principal components for principal component analysis (SAS/ETS); variables were identified with a statistical significance (< 0.7 and Pearson values ≥ 0.7), with 80.81% of the accumulation of genetic variation and 110 genetic bands. Thirty-nine (39) variables were recovered using NTSYSpc software where 30 showed a Pearson correlation (> 0.5) and nine variables (< 0.05), Finally, using a cladistics analysis approach highlighted 65 genetic bands, in addition to color of the fruit, presence of thorns, bitter flavor, piriform and oblong shape, and also content of chlorophylls a and b, presence of cucurbitacins, and the IC50 effect of chayote extracts on the four cell lines.


Subject(s)
Bioprospecting , Cucurbitaceae , Cucurbitacins/pharmacology , Fruit/chemistry , Plant Extracts/pharmacology , Animals , Cell Line , Cucurbitaceae/chemistry , Cucurbitaceae/classification , Cucurbitaceae/genetics , Genotype , Humans , Mice , Polymorphism, Genetic
7.
Transgenic Res ; 30(1): 23-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33475916

ABSTRACT

We recently reported that a genetic transformation of the RNA-Binding-Protein (McRBP), an RNA chaperone gene derived from common ice plant (Mesembryanthemum crystallinum), alleviated injury and loss of biomass production by salt stress in Eucalyptus camaldulensis in a semi-confined screen house trial. In this study, we assessed the potential environmental impact of the transgenic Eucalyptus in a manner complying with Japanese biosafety regulatory framework required for getting permission for experimental confined field trials. Two kinds of bioassays for the effects of allelopathic activity on the growth of other plants, i.e., the sandwich assay and the succeeding crop assay, were performed for three transgenic lines and three non-transgenic lines. No significant differences were observed between transgenic and non-transgenic plants. No significant difference in the numbers of cultivable microorganisms analyzed by the spread plate method were observed among the six transgenic and non-transgenic lines. These results suggested that there is no significant difference in the potential impact on biodiversity between the transgenic McRBP-E. camaldulensis lines and their non-transgenic comparators.


Subject(s)
Eucalyptus/genetics , Mesembryanthemum/genetics , Plants, Genetically Modified/genetics , RNA, Plant/genetics , Biodiversity , Eucalyptus/growth & development , Plants, Genetically Modified/growth & development , RNA-Binding Proteins/genetics , Salt Stress/genetics , Salt Tolerance/genetics
8.
Front Plant Sci ; 12: 772389, 2021.
Article in English | MEDLINE | ID: mdl-35756862

ABSTRACT

Natural products are in great demand because certain secondary metabolites (SMs) are sources of antioxidants, flavorings, active substances, or anticancer agents with less aggressiveness and selectivity, among which triterpenes and flavonoids are of importance because they inhibit carcinogenesis. For Sechium spp. P. Br. (chayotes), there is scientific evidence of antiproliferative activity that has occurred when cancer cell lines have been treated with this fruit. In order to compare future therapeutic designs and identify new and ancestral characteristics, triterpenes and flavonoids were determined in contrasting Sechium genotypes. The obtained data were analyzed via a cladistics approach, with the aim of identifying the characteristics and state of phytochemicals and genetic variables. The concentrations of flavonoids and triterpenes were determined, and a more complex composition of secondary metabolites was found in the wild types as compared to their domesticated genotypes. Bitter fruits contained a higher number of SMs, followed by those with a neutral and sweet flavor. A cladogram showed the differentiation of the three groups based on the flavor of the fruits. The diversity of SMs decreases in evolutionary terms, in response to domestication and environmental adaptation. Therefore, genotypes can be feasibly selected based on fruit flavor for gross-breeding, and cytotoxicity can be reduced without losing possible therapeutic effects.

9.
Front Genet ; 11: 1028, 2020.
Article in English | MEDLINE | ID: mdl-33193590

ABSTRACT

Integration of scientific knowledge into negotiations of the Multilateral Environment Agreements (MEAs) is crucial to effective implementation of those MEAs by ensuring uniformity in their terminology. Recent innovations in the field of biotechnology provoked a discussion over "Digital Sequence Information" (DSI) in fora of several MEAs. In the context of this discussion, the term DSI remains ambiguous and encompasses a wide range of concepts, including, at least, DNA/RNA base sequence data. We focused on how the term "DSI" was regarded in negotiations of the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources for Food and Agriculture, analyzed the changes of terminology for DSI in the opinions or views of the Parties in the supreme decision-making bodies of these agreements from the perspective of the MEAs implementation. Based on these efforts we suggest the ways and means to support challenges regarding integration of scientific knowledge into MEAs.

10.
Metabolites ; 10(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549365

ABSTRACT

The emissions of volatile organic compounds (VOCs) strongly depend on the plant species and are differently represented in specific taxa. VOCs have a degree of chemical diversity and also can serve as chemotaxonomic markers. Zingiber barbatum Wall. is a wild medicinal ginger plant endemic to Myanmar whose VOC composition has never been screened before. In this study, we screened the rhizome of Z. barbatum to identify the VOC composition by the application of gas chromatography combined with time-of-flight-mass spectrometry (GC-TOF-MS). The resulting VOC profile of Z. barbatum showed that it consists mainly of monoterpenes (21%) and sesquiterpenes (30%). Intraspecific similarities and dissimilarities were found to exist between Z. barbatum genotypes in terms of VOC composition. Four accessions (ZO191, ZO223, ZO217, and the control accession ZO105) collected from the Shan State and Mandalay region of Myanmar were found to share a similar VOC profile, while two accessions (ZO64 and ZO160) collected from the Bago region were found to vary in their VOC profiles compared with the control accession. The two identified compounds, i.e., α-bergamotene and ß-(E)-guaiene may serve as discriminative chemical markers for the characterization of Z. barbatum species collected in these three geographical regions of Myanmar. This study represents a first attempt to identify and describe the VOCs in the medicinal species Z. barbatum that have not been reported to date.

11.
Metabolites ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396947

ABSTRACT

Curcuma amada Roxb. (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones: ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, ß-bisabolene, teresantalol, ß-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5-27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.

12.
Article in English | MEDLINE | ID: mdl-31867318

ABSTRACT

The Japanese government recognizes the substantial values of genome-edited agricultural organisms and has defined in which cases these are covered by the existing regulatory framework to handle this technology. Genome-editing technologies could revolutionize and accelerate plant breeding owing to the simplicity of the methods and precision of genome modifications. These technologies have spread rapidly and widely, and various genome-edited crops have been developed recently. The regulatory status of genome-edited end products is a subject of controversy worldwide. In February 2019, the Japanese government defined genome-edited end products derived by modifications of SDN-1 type (directed mutation without using a DNA sequence template) as not representing "living modified organisms" according to the Japanese Cartagena Act. Here, we describe the classification and regulatory status of genome-edited end products in this decision. We hope that reporting the progress in Japan toward the implementation of this regulatory approach will provide insight for scientific and regulatory communities worldwide.

13.
Plant Biotechnol (Tokyo) ; 36(3): 181-185, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31768120

ABSTRACT

Hybrid Oncidium orchids, such as Oncidium Gower Ramsey and Oncidium "Honey Angel," are popular cut flowers in Japan and Taiwan. Due to pollen sterility, no new varieties have been created by conventional breeding methods. Recently, we employed RNA interference (RNAi) technology to suppress phytoene synthase and successfully modified floret hue from yellow to white (Liu et al. 2019). Transgenic white Oncidium orchids, Honey Snow MF-1, have been grown to test their genetic stability, and their environmental biosafety was assessed for approximately one year under government regulatory instructions from the Council of Agriculture, Taiwan. In the present study, pollen sterility was demonstrated by cytological observation of the microsporogenesis step, pollen morphology abortion, and failure of pollen germination. Assays on allelopathic effect on the other plants and the soil rhizospheric microbial flora-revealed that transgenic Oncidium orchids are potentially safe with regard to environmental biodiversity. Therefore, the general release permissions have been granted and an application for licensing for commercial production is under way.

14.
Breed Sci ; 69(4): 545-563, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31988619

ABSTRACT

Climate change triggers increases in temperature, drought, and/or salinity that threaten potato production, because they necessitate specific amounts and quality of water, meanwhile lower temperatures generally support stable crop yields. Various cultivation techniques have been developed to reduce the negative effects of drought, heat and/or salinity stresses on potato. Developing innovative varieties with relevant tolerance to abiotic stress is absolutely necessary to guarantee competitive production under sub-optimal environments. Commercial varieties are sensitive to abiotic stresses, and substantial changes to their higher tolerance levels are not easily achieved because their genetic base is narrow. Nonetheless, there are several other possibilities for genetic enhancement using landraces and wild relatives. The complexity of polysomic genetics and heterozygosity in potato hamper the phenotype evaluation over abiotic stresses and consequent conventional introgression of tolerance traits, which are more challenging than previous successes shown over diseases and insects resistances. Today, potatoes face more challenges with severe abiotic stresses. Potato wild relatives can be explored further using innovative genomic, transcriptomic, proteomic, and metabolomic approaches. At the field level, appropriate cultivation techniques must be applied along with precision farming technology and tolerant varieties developed from various breeding techniques, in order to realize high yield under multiple stresses.

15.
Plant Biotechnol J ; 17(4): 801-811, 2019 04.
Article in English | MEDLINE | ID: mdl-30230168

ABSTRACT

The breeding of plantation forestry trees for the possible afforestation of marginal land would be one approach to addressing global warming issues. Here, we developed novel transgenic Eucalyptus trees (Eucalyptus camaldulensis Dehnh.) harbouring an RNA-Binding-Protein (McRBP) gene derived from a halophyte plant, common ice plant (Mesembryanthemum crystallinum L.). We conducted screened-house trials of the transgenic Eucalyptus using two different stringency salinity stress conditions to evaluate the plants' acute and chronic salt stress tolerances. Treatment with 400 mM NaCl, as the high-stringency salinity stress, resulted in soil electrical conductivity (EC) levels >20 mS/cm within 4 weeks. With the 400 mM NaCl treatment, >70% of the transgenic plants were intact, whereas >40% of the non-transgenic plants were withered. Treatment with 70 mM NaCl, as the moderate-stringency salinity stress, resulted in soil EC levels of approx. 9 mS/cm after 2 months, and these salinity levels were maintained for the next 4 months. All plants regardless of transgenic or non-transgenic status survived the 70 mM NaCl treatment, but after 6-month treatment the transgenic plants showed significantly higher growth and quantum yield of photosynthesis levels compared to the non-transgenic plants. In addition, the salt accumulation in the leaves of the transgenic plants was 30% lower than that of non-transgenic plants after 15-week moderate salt stress treatment. There results suggest that McRBP expression in the transgenic Eucalyptus enhances their salt tolerance both acutely and chronically.


Subject(s)
Eucalyptus/genetics , Mesembryanthemum/genetics , RNA-Binding Proteins/metabolism , DNA Shuffling , Eucalyptus/physiology , Photosynthesis , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA-Binding Proteins/genetics , Salinity , Salt Tolerance , Salt-Tolerant Plants , Sodium Chloride/adverse effects , Trees
16.
Plant Biotechnol (Tokyo) ; 35(3): 215-224, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-31819726

ABSTRACT

Novel transgenic Eucalyptus camaldulensis trees expressing the bacterial choline oxidase A (codA) gene by the Cauliflower mosaic virus (CaMV) 35S promoter and the Arabidopsis thaliana heat shock protein (HSP) terminator was developed. To evaluate the codA transcription level and the metabolic products and abiotic stress tolerance of the transgenic trees, a six-month semi-confined screen house cultivation trial was conducted under a moderate-stringency salt-stress condition. The transcription level of the CaMV 35S promoter driven-codA was more than fourfold higher, and the content of glycine betaine, the metabolic product of codA, was twofold higher, with the HSP terminator than with the nopaline synthase (NOS) terminator. Moreover, the screen house cultivation revealed that the growth of transgenic trees under the salt stress condition was alleviated in correlation with the glycine betaine concentration. These results suggest that the enhancement of codA transcription by the HSP terminator increased the abiotic stress tolerance of Eucalyptus plantation trees.

17.
Plant Biotechnol (Tokyo) ; 35(4): 393-397, 2018 Dec 25.
Article in English | MEDLINE | ID: mdl-31892828

ABSTRACT

Under the Japanese biosafety regulatory framework for transgenic plants, data for assessing a transgenic plant's impact on biodiversity must be submitted in order to obtain approval for a confined field trial. We recently reported the development of four novel transgenic Eucalyptus camaldulensis clones expressing the bacterial choline oxidase A (codA) gene, i.e., codAH-1, codAH-2, codAN-1, and codAN-2, and evaluated their abiotic tolerance by semiconfined screen house trial cultivation. Here we evaluated the impacts of the transgenic E. camaldulensis clones on productivities of harmful substances from those clones to affect soil microorganisms and/or other plants in the environment. A comparison of the assessment data between the transgenic trees and non-transgenic comparators showed no significant difference in potential impacts on biodiversity. The results contribute to sound-science evidence ensuring substantial equivalence between transgenic and non-transgenic E. camaldulensis.

19.
Breed Sci ; 66(2): 204-12, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27162492

ABSTRACT

Rice (Oryza sativa L.) is the main food for people in Laos, where it has been grown and eaten since prehistory. Diverse landraces are grown in Laos. 'Khao Kai Noi', a landrace favored for its eating quality, is held in the nationwide collection of traditional landraces in the Lao national genebank. Genetic diversity is crucial for sustainable use of genetic resources and conservation. To investigate the genetic diversity of 'Khao Kai Noi' for conservation, we genotyped 70 accessions by using 23 polymorphic simple sequence repeat markers. The markers generated 2 to 17 alleles (132 in total), with an average of 5.7 per locus. The total expected heterozygosity over all 'Khao Kai Noi' accessions was 0.271. Genetic variation was largest among accessions and smallest within accessions. Khao Kai Noi accessions were classified into three different genetic backgrounds, but there was unclear association between the three inferred population and name subgroups and geographical distribution. Most of the accessions were clustered with temperate japonica and showed genetic relatedness to rice from neighboring provinces of Vietnam, suggesting a Vietnamese origin. The results of this study will contribute to the conservation, core collection and future breeding of the Khao Kai Noi population.

20.
Breed Sci ; 66(5): 703-710, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28163586

ABSTRACT

Cultivated potato is a drought-, salinity-, and frost-sensitive species. The transgenic approach is one of the methods used to mitigate abiotic stress. The utility of transgenic potatoes that have abiotic stress tolerance should be judged from their yield under stress conditions. In order to establish transgenic potato lines with the AtDREB1A gene that could be used in practical applications, we screened candidate lines in a growth room with growth profiles under non-stress conditions rather than the expression level of transgene. After identifying better transgenic lines (D163 and D164), yield of those lines under stress conditions was evaluated in the special netted-house. Although the yield was lower than the yield under non-stress conditions, two selected transgenic lines were able to maintain their yield under high saline conditions (EC > 10 mS/cm). In this study, fertilizer was not added beyond what was already contained in the soil mix in order to evaluate the yield of the transgenic lines under saline conditions in as simple a manner as possible. In future studies, it will be necessary to evaluate their yield in a farming context in an isolated field after assessing the environmental biosafety of these transgenic potato lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...