Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 10(10)2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30314329

ABSTRACT

BACKGROUND: Patients with locally advanced or recurrent prostate cancer typically undergo androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect differential responses to ADT and subsequent metastasis. RESULTS: We performed whole transcriptome analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens, and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype (PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype (PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype. Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the high impact group network. Leveraging a large public dataset of over 800 metastatic and primary samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions, including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1. The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network, suggesting a refinement of critical TFCGs in prostate cancer progression. CONCLUSIONS: We have identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel combination therapies to prevent the development of CRPC following ADT.

2.
Nat Commun ; 9(1): 2286, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29875356

ABSTRACT

In the originally published version of this Article, the GAPDH loading control blot in Fig. 1a was inadvertently replaced with a duplicate of the DNMT2 blot in the same panel during assembly of the figure. This has now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 1163, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563491

ABSTRACT

The roles of RNA 5-methylcytosine (RNA:m5C) and RNA:m5C methyltransferases (RCMTs) in lineage-associated chromatin organization and drug response/resistance are unclear. Here we demonstrate that the RCMTs, namely NSUN3 and DNMT2, directly bind hnRNPK, a conserved RNA-binding protein. hnRNPK interacts with the lineage-determining transcription factors (TFs), GATA1 and SPI1/PU.1, and with CDK9/P-TEFb to recruit RNA-polymerase-II at nascent RNA, leading to formation of 5-Azacitidine (5-AZA)-sensitive chromatin structure. In contrast, NSUN1 binds BRD4 and RNA-polymerase-II to form an active chromatin structure that is insensitive to 5-AZA, but hypersensitive to the BRD4 inhibitor JQ1 and to the downregulation of NSUN1 by siRNAs. Both 5-AZA-resistant leukaemia cell lines and clinically 5-AZA-resistant myelodysplastic syndrome and acute myeloid leukaemia specimens have a significant increase in RNA:m5C and NSUN1-/BRD4-associated active chromatin. This study reveals novel RNA:m5C/RCMT-mediated chromatin structures that modulate 5-AZA response/resistance in leukaemia cells, and hence provides a new insight into treatment of leukaemia.


Subject(s)
Antineoplastic Agents/pharmacology , Azacitidine/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , RNA, Neoplasm/genetics , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Cycle Proteins , Cell Line, Tumor , Chromatin/chemistry , Chromatin/drug effects , Chromatin/metabolism , Chromatin Assembly and Disassembly , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Cytosine/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Neoplasm/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Plant Cell Environ ; 40(9): 2004-2016, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28626890

ABSTRACT

Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 µM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells.


Subject(s)
Abscisic Acid/metabolism , Gene Expression Profiling , Oryza/cytology , Oryza/genetics , Plant Proteins/metabolism , Response Elements/genetics , 5' Untranslated Regions/genetics , Arabidopsis/genetics , Base Pairing/genetics , Codon/genetics , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Solanum lycopersicum/genetics , Mutation/genetics , Nucleotide Motifs/genetics , Oryza/drug effects , Promoter Regions, Genetic , Sequence Analysis, RNA , Signal Transduction/drug effects , Sorghum/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcription, Genetic/drug effects
5.
DNA Res ; 23(4): 311-23, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27345721

ABSTRACT

The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Droughts , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc Fingers
6.
Bioinformatics ; 32(13): 2024-5, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27153680

ABSTRACT

UNLABELLED: Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. AVAILABILITY AND IMPLEMENTATION: TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html CONTACT: : jeffery.shen@unlv.nevada.edu.


Subject(s)
Computational Biology/methods , Protein Domains , Software , Internet , Sequence Analysis, Protein
7.
DNA Res ; 22(5): 319-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26341416

ABSTRACT

Annotation of the rice (Oryza sativa) genome has evolved significantly since release of its draft sequence, but it is far from complete. Several published transcript assembly programmes were tested on RNA-sequencing (RNA-seq) data to determine their effectiveness in identifying novel genes to improve the rice genome annotation. Cufflinks, a popular assembly software, did not identify all transcripts suggested by the RNA-seq data. Other assembly software was CPU intensive, lacked documentation, or lacked software updates. To overcome these shortcomings, a heuristic ab initio transcript assembly algorithm, Tiling Assembly, was developed to identify genes based on short read and junction alignment. Tiling Assembly was compared with Cufflinks to evaluate its gene-finding capabilities. Additionally, a pipeline was developed to eliminate false-positive gene identification due to noise or repetitive regions in the genome. By combining Tiling Assembly and Cufflinks, 767 unannotated genes were identified in the rice genome, demonstrating that combining both programmes proved highly efficient for novel gene identification. We also demonstrated that Tiling Assembly can accurately determine transcription start sites by comparing the Tiling Assembly genes with their corresponding full-length cDNA. We applied our pipeline to additional organisms and identified numerous unannotated genes, demonstrating that Tiling Assembly is an organism-independent tool for genome annotation.


Subject(s)
Molecular Sequence Annotation/methods , Oryza/genetics , Software , DNA, Complementary/genetics , Gene Expression Profiling/methods , Genome, Plant , Open Reading Frames , Sequence Analysis, RNA , Terminator Regions, Genetic , Transcription Initiation Site , Transcriptome
8.
Genomics ; 103(1): 122-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24200500

ABSTRACT

The rice genome annotation has been greatly improved in recent years, largely due to the availability of full length cDNA sequences derived from many tissues. Among those yet to be studied is the aleurone layer, which produces hydrolases for mobilization of seed storage reserves during seed germination and post germination growth. Herein, we report transcriptomes of aleurone cells treated with the hormones abscisic acid, gibberellic acid, or both. Using a comprehensive approach, we identified hundreds of novel genes. To minimize the number of false positives, only transcripts that did not overlap with existing annotations, had a high level of expression, and showed a high level of uniqueness within the rice genome were considered to be novel genes. This approach led to the identification of 553 novel genes that encode proteins and/or microRNAs. The transcriptome data reported here will help to further improve the annotation of the rice genome.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , MicroRNAs/genetics , Oryza/genetics , Seeds/genetics , Abscisic Acid/pharmacology , Algorithms , Gibberellins/pharmacology , High-Throughput Nucleotide Sequencing , MicroRNAs/metabolism , Oryza/drug effects , Plant Growth Regulators/pharmacology , Seeds/drug effects , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...