Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 875, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267310

ABSTRACT

Many synthetic gene circuits are restricted to single-use applications or require iterative refinement for incorporation into complex systems. One example is the recombinase-based digitizer circuit, which has been used to improve weak or leaky biological signals. Here we present a workflow to quantitatively define digitizer performance and predict responses to different input signals. Using a combination of signal-to-noise ratio (SNR), area under a receiver operating characteristic curve (AUC), and fold change (FC), we evaluate three small-molecule inducible digitizer designs demonstrating FC up to 508x and SNR up to 3.77 dB. To study their behavior further and improve modularity, we develop a mixed phenotypic/mechanistic model capable of predicting digitizer configurations that amplify a synNotch cell-to-cell communication signal (Δ SNR up to 2.8 dB). We hope the metrics and modeling approaches here will facilitate incorporation of these digitizers into other systems while providing an improved workflow for gene circuit characterization.


Subject(s)
Genetic Engineering/methods , Recombinases/genetics , Signal Transduction , Synthetic Biology/methods , ROC Curve
2.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Article in English | MEDLINE | ID: mdl-32845085

ABSTRACT

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Subject(s)
Systems Biology/methods , Animals , Humans , Logistic Models , Models, Biological , Software
3.
ACS Synth Biol ; 8(7): 1560-1563, 2019 07 19.
Article in English | MEDLINE | ID: mdl-29944839

ABSTRACT

The iBioSim tool has been developed to facilitate the design of genetic circuits via a model-based design strategy. This paper illustrates the new features incorporated into the tool for DNA circuit design, design analysis, and design synthesis, all of which can be used in a workflow for the systematic construction of new genetic circuits.


Subject(s)
Gene Regulatory Networks/genetics , Synthetic Biology/methods , Algorithms , DNA/genetics , Software , Workflow
4.
IEEE Trans Biomed Eng ; 63(10): 2007-14, 2016 10.
Article in English | MEDLINE | ID: mdl-27305665

ABSTRACT

OBJECTIVE: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. METHODS: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. RESULTS: Our analysis revealed several challenges to representing WC models using the current standards. CONCLUSION: We, therefore, propose several new WC modeling standards, software, and databases. SIGNIFICANCE: We anticipate that these new standards and software will enable more comprehensive models.


Subject(s)
Computer Simulation , Models, Biological , Software , Systems Biology/standards , Computational Biology , Cytological Techniques , Female , Humans , Male , Systems Biology/education , Systems Biology/organization & administration
5.
ACS Synth Biol ; 5(8): 835-41, 2016 08 19.
Article in English | MEDLINE | ID: mdl-26912276

ABSTRACT

The Systems Biology Markup Language (SBML) has been widely used for modeling biological systems. Although SBML has been successful in representing a wide variety of biochemical models, the core standard lacks the structure for representing large complex regular systems in a standard way, such as whole-cell and cellular population models. These models require a large number of variables to represent certain aspects of these types of models, such as the chromosome in the whole-cell model and the many identical cell models in a cellular population. While SBML core is not designed to handle these types of models efficiently, the proposed SBML arrays package can represent such regular structures more easily. However, in order to take full advantage of the package, analysis needs to be aware of the arrays structure. When expanding the array constructs within a model, some of the advantages of using arrays are lost. This paper describes a more efficient way to simulate arrayed models. To illustrate the proposed method, this paper uses a population of repressilator and genetic toggle switch circuits as examples. Results show that there are memory benefits using this approach with a modest cost in runtime.


Subject(s)
Programming Languages , Systems Biology/methods , Models, Biological , Software
6.
Bioinformatics ; 31(20): 3383-6, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26079347

ABSTRACT

UNLABELLED: JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users. AVAILABILITY AND IMPLEMENTATION: Source code, binaries and documentation for JSBML can be freely obtained under the terms of the LGPL 2.1 from the website http://sbml.org/Software/JSBML. More information about JSBML can be found in the user guide at http://sbml.org/Software/JSBML/docs/. CONTACT: jsbml-development@googlegroups.com or andraeger@eng.ucsd.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Biological , Software , Systems Biology , Computer Simulation , Programming Languages
7.
Article in English | MEDLINE | ID: mdl-25506588

ABSTRACT

This paper describes a hierarchical stochastic simulation algorithm, which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

SELECTION OF CITATIONS
SEARCH DETAIL
...