Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Article in English | MEDLINE | ID: mdl-38508744

ABSTRACT

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress , Epithelial Cells , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
2.
J Am Heart Assoc ; 13(1): e031219, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38158218

ABSTRACT

BACKGROUND: Ferroptosis, an iron-dependent form of regulated cell death, is a major cell death mode in myocardial ischemia reperfusion (I/R) injury, along with mitochondrial permeability transition-driven necrosis, which is inhibited by cyclosporine A (CsA). However, therapeutics targeting ferroptosis during myocardial I/R injury have not yet been developed. Hence, we aimed to investigate the therapeutic efficacy of deferasirox, an iron chelator, against hypoxia/reoxygenation-induced ferroptosis in cultured cardiomyocytes and myocardial I/R injury. METHODS AND RESULTS: The effects of deferasirox on hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis were examined in cultured cardiomyocytes. In a mouse model of I/R injury, the infarct size and adverse cardiac remodeling were examined after treatment with deferasirox, CsA, or both in combination. Deferasirox suppressed hypoxia- or hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis in cultured cardiomyocytes. Deferasirox treatment reduced iron levels in the endoplasmic reticulum and prevented increases in lipid peroxidation and ferroptosis in the I/R-injured myocardium 24 hours after I/R. Deferasirox and CsA independently reduced the infarct size after I/R injury to a similar degree, and combination therapy with deferasirox and CsA synergistically reduced the infarct size (infarct area/area at risk; control treatment: 64±2%; deferasirox treatment: 48±3%; CsA treatment: 48±4%; deferasirox+CsA treatment: 37±3%), thereby ameliorating adverse cardiac remodeling on day 14 after I/R. CONCLUSIONS: Combination therapy with deferasirox and CsA may be a clinically feasible and effective therapeutic approach for limiting I/R injury and ameliorating adverse cardiac remodeling after myocardial infarction.


Subject(s)
Ferroptosis , Iron Overload , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Reperfusion Injury , Mice , Animals , Cyclosporine/pharmacology , Myocardial Reperfusion Injury/metabolism , Deferasirox/pharmacology , Deferasirox/metabolism , Deferasirox/therapeutic use , Ventricular Remodeling , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Reperfusion Injury/metabolism , Iron/metabolism , Hypoxia/metabolism , Iron Overload/metabolism , Myocardial Ischemia/metabolism
3.
Circ Heart Fail ; 16(10): e010347, 2023 10.
Article in English | MEDLINE | ID: mdl-37522180

ABSTRACT

BACKGROUND: Cardiac autoantibodies (cAAbs) are involved in the progression of adverse cardiac remodeling in heart failure (HF). However, our understanding of cAAbs in HF is limited owing to the absence of relevant animal models. Herein, we aimed to establish and characterize a murine model of cAAb-positive HF after myocardial infarction (MI), thereby facilitating the development of therapeutics targeting cAAbs in post-MI HF. METHODS: MI was induced in BALB/c mice. Plasma cAAbs were evaluated using modified Western blot-based methods. Prognosis, cardiac function, inflammation, and fibrosis were compared between cAAb-positive and cAAb-negative MI mice. Rapamycin was used to inhibit cAAb production. RESULTS: Common cAAbs in BALB/c MI mice targeted cTnI (cardiac troponin I). Herein, 71% (24/34) and 44% (12/27) of the male and female MI mice, respectively, were positive for cAAbs against cTnI (cTnIAAb). Germinal centers were formed in the spleens and mediastinal lymph nodes of cTnIAAb-positive MI mice. cTnIAAb-positive MI mice showed progressive cardiac remodeling with a worse prognosis (P=0.014, by log-rank test), which was accompanied by cardiac inflammation, compared with that in cTnIAAb-negative MI mice. Rapamycin treatment during the first 7 days after MI suppressed cTnIAAb production (cTnIAAb positivity, 59% [29/49] and 7% [2/28] in MI mice treated with vehicle and rapamycin, respectively; P<0.001, by Pearson χ2 test), consequently improving the survival and ameliorating cardiac inflammation, cardiac remodeling, and HF in MI mice. CONCLUSIONS: The present post-MI HF model may accelerate our understanding of cTnIAAb and support the development of therapeutics against cTnIAAbs in post-MI HF.


Subject(s)
Heart Failure , Myocardial Infarction , Mice , Male , Female , Animals , Heart Failure/etiology , Heart Failure/complications , Myocardium/pathology , Troponin I , Disease Models, Animal , Autoantibodies , Ventricular Remodeling , Inflammation/pathology , Sirolimus
4.
Sci Signal ; 15(758): eabn8017, 2022 11.
Article in English | MEDLINE | ID: mdl-36318618

ABSTRACT

Clinical use of doxorubicin (DOX) is limited because of its cardiotoxicity, referred to as DOX-induced cardiomyopathy (DIC). Mitochondria-dependent ferroptosis, which is triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DIC. Here, we showed that DOX accumulated in mitochondria by intercalating into mitochondrial DNA (mtDNA), inducing ferroptosis in an mtDNA content-dependent manner. In addition, DOX disrupted heme synthesis by decreasing the abundance of 5'-aminolevulinate synthase 1 (Alas1), the rate-limiting enzyme in this process, thereby impairing iron utilization, resulting in iron overload and ferroptosis in mitochondria in cultured cardiomyocytes. Alas1 overexpression prevented this outcome. Administration of 5-aminolevulinic acid (5-ALA), the product of Alas1, to cultured cardiomyocytes and mice suppressed iron overload and lipid peroxidation, thereby preventing DOX-induced ferroptosis and DIC. Our findings reveal that the accumulation of DOX and iron in mitochondria cooperatively induces ferroptosis in cardiomyocytes and suggest that 5-ALA can be used as a potential therapeutic agent for DIC.


Subject(s)
Ferroptosis , Iron Overload , Mice , Animals , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , DNA, Mitochondrial/metabolism , Aminolevulinic Acid/metabolism , Doxorubicin/pharmacology , Mitochondria/genetics , Myocytes, Cardiac/metabolism , Iron Overload/complications , Iron Overload/metabolism , Iron/metabolism , Heme/metabolism
5.
J Cardiovasc Pharmacol ; 80(5): 690-699, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35881422

ABSTRACT

ABSTRACT: Doxorubicin (DOX) is an effective anti-cancer agent for various malignancies. Nevertheless, it has a side effect of cardiotoxicity, referred to as doxorubicin-induced cardiomyopathy (DIC), that is associated with a poorer prognosis. This cardiotoxicity limits the clinical use of DOX as a therapeutic agent for malignancies. Recently, ferroptosis, a form of regulated cell death induced by the accumulation of lipid peroxides, has been recognized as a major pathophysiology of DIC. Ethoxyquin is a lipophilic antioxidant widely used for food preservation and thus may be a potential therapeutic drug for preventing DIC. However, the efficacy of ethoxyquin against ferroptosis and DIC remains to be fully elucidated. Here, we investigated the inhibitory action of ethoxyquin against GPx4-deficient ferroptosis and its therapeutic efficacy against DOX-induced cell death in cultured cardiomyocytes and cardiotoxicity in a murine model of DIC. In cultured cardiomyocytes, ethoxyquin treatment effectively prevented GPx4-deficient ferroptosis. Ethoxyquin also prevented DOX-induced cell death, accompanied by the suppression of malondialdehyde (MDA) and mitochondrial lipid peroxides, which were induced by DOX. Furthermore, ethoxyquin significantly prevented DOX-induced cell death without any suppression of caspase cleavages representing apoptosis. In DIC mice, ethoxyquin treatment ameliorated cardiac impairments, such as contractile dysfunction and myocardial atrophy, and lung congestion. Ethoxyquin also suppressed serum lactate dehydrogenase and creatine kinase activities, decreased the levels of lipid peroxides such as MDA and acrolein, inhibited cardiac fibrosis, and reduced TUNEL-positive cells in the hearts of DIC mice. Collectively, ethoxyquin is a competent antioxidant for preventing ferroptosis in DIC and can be its prospective therapeutic drug.


Subject(s)
Cardiomyopathies , Ferroptosis , Mice , Animals , Cardiotoxicity/prevention & control , Antioxidants/therapeutic use , Ethoxyquin/metabolism , Ethoxyquin/pharmacology , Ethoxyquin/therapeutic use , Lipid Peroxides/metabolism , Lipid Peroxides/pharmacology , Oxidative Stress , Doxorubicin/toxicity , Myocytes, Cardiac , Apoptosis , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Cardiomyopathies/metabolism
6.
J Anesth ; 35(1): 59-67, 2021 02.
Article in English | MEDLINE | ID: mdl-33052457

ABSTRACT

PURPOSE: We aimed to investigate whether 6% HES 130/0.4 was associated with postoperative reduction of estimated glomerular filtration rate (eGFR) in donor patients who underwent nephrectomy for living kidney transplantation. METHODS: This retrospective study included 213 living kidney transplant donors treated at Kyushu University Hospital in Japan from April 2014 to March 2018. Patients who were administered 6% HES 130/0.4 were allocated in the HES group (n = 108), and those who were not were allocated in the control group (n = 105). The postoperative decrements in estimated glomerular filtration rates (eGFRs) from preoperative values were calculated on postoperative days (PODs) 1, 3, and 14. Decline in kidney function (DKF) according to the Kidney Disease: Improving Global Outcomes (KDIGO) classification were analyzed by multivariable-adjusted ordinal logistic regression to estimate odds ratios (ORs) for postoperative DKF. RESULTS: In HES group, administration amount of HES was median 9.4 [interquartile range: 8.2-14.3] ml/kg. Postoperative decrements in eGFR were similar in the control and HES groups on POD 1 (control group: mean 32.0 vs. HES group: 33.0 mL/min/1.73 m2), same as POD 3 (21.1 vs. 22.4 mL/min/1.73 m2) and POD 14 (26.0 vs. 25.9 mL/min/1.73 m2), even after adjusting for confounding factors. The multivariable-adjusted ORs for postoperative DKF did not significantly increase in the HES group on POD 1 (OR: 0.88), POD 3 (OR: 0.96), and POD 14 (OR: 0.52) compared with the control group. CONCLUSION: Six percent HES 130/0.4 is not associated with postoperative renal dysfunction in donor patients undergoing nephrectomy for kidney transplantation.


Subject(s)
Kidney , Living Donors , Glomerular Filtration Rate , Humans , Hydroxyethyl Starch Derivatives/adverse effects , Japan , Nephrectomy/adverse effects , Retrospective Studies
7.
JA Clin Rep ; 6(1): 78, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33025367

ABSTRACT

BACKGROUND: Patients with malignant pleural mesothelioma (MPM) frequently complain of intractable pain that is resistant to conservative treatments. Although spinal cord stimulation (SCS) may be promising in the alleviation of such devastating pain, the effects of SCS on MPM-associated pain and the appropriate timing of its application remain unknown. CASE PRESENTATION: A 66-year-old man diagnosed with MPM presented with severe neuropathic pain due to rapid progression of the tumor to the intercostal nerves. The patient immediately decided to receive SCS implantation and burst stimulus, which relieved the conservative therapy-resistant pain and improved his sleep and daily activities. CONCLUSION: This report suggests that the execution of SCS as soon as possible may help to alleviate MPM symptoms. Since MPM extends aggressively to the thorax and nerves that cause mixed nociceptive and/or neuropathic pain, appropriate pain management requires the proper assessment of the etiology by an expert in pain management.

SELECTION OF CITATIONS
SEARCH DETAIL
...