Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rapid Commun Mass Spectrom ; 38(2): e9660, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38124166

ABSTRACT

RATIONALE: The thiosuccinimide linker is widely used in the synthesis of bioconjugates. However, it is susceptible to hydrolysis and is transformed into its hydrolyzed and/or the isobaric thiazine forms, the latter of which is a fairly common product in a conjugate that contains a cysteinyl peptide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS) are useful for differentiating these isobaric species. METHODS: Four cross-linked peptides with thiosuccinimide linkers were synthesized. Analogs with linkers that were transformed into thiazine and/or the hydrolyzed thiosuccinimide linkers were then synthesized by incubating the samples at neutral or basic pH. All the cross-linked peptides were purified using RP-HPLC (reversed-phase high-performance liquid chromatography) and differentiated using MALDI-MS, MALDI-MS/MS, and ultraviolet photodissociation. RESULTS: A cysteinyl peptide-containing conjugate, the thiosuccinimide form, was largely transformed into the hydrolyzed or thiazine forms after incubation at neutral or basic pH. MALDI-MS allowed the three forms to be differentiated: the thiosuccinimide and its hydrolysis product yielded two constituent peptides after reductive cleavage between the Cys and succinimide moieties; no fragment ions were produced from the thiazine form. In addition, MALDI-MS/MS of the thiosuccinimide form yielded two pairs of complementary fragment ions via 1,4-elimination: Cys-SH and maleimide, and dehydro-alanine and thiosuccinimide, which are different from those produced via reductive cleavage in MALDI-MS. The thiazine form yielded fragment ions resulting from the cleavage of the newly formed amide bond in the linker that resulted from thiazine formation. CONCLUSIONS: The thiosuccinimide (but not thiazine) form of the cross-linked peptide yielded individual constituent peptides using MALDI-MS and MALDI-MS/MS, showing specific 1,4-elimination for the thiosuccinimide form and cleavage at the newly formed peptide bond via transcyclization for the thiazine form.


Subject(s)
Tandem Mass Spectrometry , Thiazines , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry , Ions , Maleimides
2.
Sci Rep ; 9(1): 12794, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488862

ABSTRACT

JRAB/MICAL-L2 is an effector protein of Rab13, a member of the Rab family of small GTPase. JRAB/MICAL-L2 consists of a calponin homology domain, a LIM domain, and a coiled-coil domain. JRAB/MICAL-L2 engages in intramolecular interaction between the N-terminal LIM domain and the C-terminal coiled-coil domain, and changes its conformation from closed to open under the effect of Rab13. Open-form JRAB/MICAL-L2 induces the formation of peripheral ruffles via an interaction between its calponin homology domain and filamin. Here, we report that the LIM domain, independent of the C-terminus, is also necessary for the function of open-form JRAB/MICAL-L2. In mechanistic terms, two zinc finger domains within the LIM domain bind the first and second molecules of actin at the minus end, potentially inhibiting the depolymerization of actin filaments (F-actin). The first zinc finger domain also contributes to the intramolecular interaction of JRAB/MICAL-L2. Moreover, the residues of the first zinc finger domain that are responsible for the intramolecular interaction are also involved in the association with F-actin. Together, our findings show that the function of open-form JRAB/MICAL-L2 mediated by the LIM domain is fine-tuned by the intramolecular interaction between the first zinc finger domain and the C-terminal domain.


Subject(s)
Actins/physiology , Cytoskeleton/physiology , Microfilament Proteins/physiology , 3T3 Cells , Animals , Hydrogen Deuterium Exchange-Mass Spectrometry , Mice , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Models, Molecular , Mutation , Protein Domains , Structure-Activity Relationship , Zinc Fingers/physiology
3.
Sci Rep ; 9(1): 11957, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420591

ABSTRACT

Most cells active in the immune system express receptors for antibodies which mediate a variety of defensive mechanisms. These receptors interact with the Fc portion of the antibody and are therefore collectively called Fc receptors. Here, using high-speed atomic force microscopy, we observe interactions of human, humanized, and mouse/human-chimeric immunoglobulin G1 (IgG1) antibodies and their cognate Fc receptor, FcγRIIIa. Our results demonstrate that not only Fc but also Fab positively contributes to the interaction with the receptor. Furthermore, hydrogen/deuterium exchange mass spectrometric analysis reveals that the Fab portion of IgG1 is directly involved in its interaction with FcγRIIIa, in addition to the canonical Fc-mediated interaction. By targeting the previously unidentified receptor-interaction sites in IgG-Fab, our findings could inspire therapeutic antibody engineering.


Subject(s)
Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Receptors, IgG/chemistry , Rituximab/chemistry , Animals , CHO Cells , Cricetulus , Humans
4.
Appl Spectrosc ; 71(7): 1621-1632, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28664780

ABSTRACT

Infrared (IR) microspectroscopy combined with a quartz crystal microbalance (QCM) together with an original relative humidity (RH) control system has been developed for studying water adsorption on a collagen film. The adsorbed water weights measured by QCM are almost similar for wetting and drying processes at 28 ℃, indicating that the collagen film is close to the water adsorption/desorption equilibria. A broad OH + NH stretching band area (3000-3700 cm-1) in the IR spectra of the collagen film increased linearly with the adsorbed weight until about 1.2 µg/8.0 µg dry collagen film at relative humidity (RH) = 40%, while at higher RH (60%, 80%), the band area deviates from the linear trend to the lower side, due to viscoelasticity and others. The OH + NH band can be simulated by four Gaussian components at 3440, 3330, 3210, and 3070 cm-1 with the relatively constant band areas of 3330 and 3070 cm-1 components due to amide A and B (NH) for increasing and decreasing RH. Bound water (3210 cm-1 component: short H bond) constitutes around 70% of total water (3440 + 3210 cm-1 band areas) at RH = 4.9% but decreases to 23% at RH = 80.3%, where free water (3440 cm-1 component: long H bond) becomes dominant over 70%. The peak shifts of C=O stretching (Amide I) and N-H bending (Amide II) can be understood by increasing hydrogen bonding of water molecules (bound water) bound to peptides at lower RH. The higher wavenumber shifts of CH stretching can be due to the loose binding of water molecules (free water) to aliphatic chains on the collagen surface, especially at higher RH. The present combined QCM-IR method is useful for studying amounts and natures of water adsorbing on biomolecules.

5.
Data Brief ; 5: 726-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26693503

ABSTRACT

Interactions between ATP and ATP-binding proteins (ATPome) are common and are required for most cellular processes. Thus, it is clearly important to identify and quantify these interactions for understanding basic cellular mechanisms and the pathogenesis of various diseases. We used an ATP competition assay (competition between ATP and acyl-ATP probes) that enabled us to distinguish specific ATP-binding proteins from non-specific proteins (Adachi et al., 2014) [1]. As a result, we identified 539 proteins, including 178 novel ATP-binding protein candidates. We also established an ATPome selectivity profiling method for kinase inhibitors using our cataloged ATPome list. Normally only kinome selectivity is profiled in selectivity profiling of kinase inhibitors. In this data, we expand the profiled targets from the kinome to the ATPome through performance of ATPome selectivity profiling and obtained target profiles of staurosporine and (S)-crizotinib. The data accompanying the manuscript on this approach (Adachi et al., 2014) [1] have been deposited to the ProteomeXchange with identifier PXD001200.

7.
J Proteome Res ; 13(12): 5461-70, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25230287

ABSTRACT

ATP-binding proteins, including protein kinases, play essential roles in many biological and pathological processes and thus these proteins are attractive as drug targets. Acyl-ATP probes have been developed as efficient probes for kinase enrichment, and these probes have also been used to enrich other ATP-binding proteins. However, a robust method to identify ATP-binding proteins with systematic elimination of nonspecific binding proteins has yet to be established. Here, we describe an ATP competition assay that permitted establishment of a rigorous ATP-binding protein list with virtual elimination of nonspecific proteins. A total of 539 ATP-binding protein candidates were identified, including 178 novel candidates. In informatics analysis, ribosomal proteins were overrepresented in the list of novel candidates. We also found multiple ATP-competitive sites for several kinases, including epidermal growth factor receptor, serine/threonine-protein kinase PRP4 homologue, cyclin-dependent kinase 12, eukaryotic elongation factor 2 kinase, ribosomal protein S6 kinase alpha-1, and SRSF protein kinase 1. Using our cataloged ATP-binding protein list, a selectivity profiling method that covers the kinome and ATPome was established to identify off-target binding sites of ATP-competitive kinase inhibitors, staurosporine and crizotinib.


Subject(s)
Adenosine Triphosphate/metabolism , Carrier Proteins/metabolism , Protein Kinases/metabolism , Proteome/metabolism , Proteomics/methods , Amino Acid Sequence , Binding Sites , Binding, Competitive , Chromatography, Liquid , Crizotinib , HeLa Cells , Humans , Molecular Probes/metabolism , Molecular Sequence Data , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Staurosporine/metabolism , Staurosporine/pharmacology , Tandem Mass Spectrometry
8.
Mol Cell Proteomics ; 13(6): 1471-84, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24687888

ABSTRACT

Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851.


Subject(s)
Colorectal Neoplasms/genetics , Membrane Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , Proteomics , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/isolation & purification , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/isolation & purification , Neoplasm Proteins/isolation & purification , Tissue Array Analysis
9.
Orphanet J Rare Dis ; 8: 197, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24360150

ABSTRACT

BACKGROUND: Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare disease, characterized by the massive accumulation of triglyceride (TG) in multiple tissues, especially skeletal muscle, heart muscle and the coronary artery. TGCV is caused by mutation of adipose triglyceride lipase, which is an essential molecule for the hydrolysis of TG. TGCV is at high risk for skeletal myopathy and heart dysfunction, and therefore premature death. Development of therapeutic methods for TGCV is highly desirable. This study aims to discover specific molecules responsible for TGCV pathogenesis. METHODS: To identify differentially expressed proteins in TGCV patient cells, the stable isotope labeling with amino acids in cell culture (SILAC) method coupled with LC-MS/MS was performed using skin fibroblast cells derived from two TGCV patients and three healthy volunteers. Altered protein expression in TGCV cells was confirmed using the selected reaction monitoring (SRM) method. Microarray-based transcriptome analysis was simultaneously performed to identify changes in gene expression in TGCV cells. RESULTS: Using SILAC proteomics, 4033 proteins were quantified, 53 of which showed significantly altered expression in both TGCV patient cells. Twenty altered proteins were chosen and confirmed using SRM. SRM analysis successfully quantified 14 proteins, 13 of which showed the same trend as SILAC proteomics. The altered protein expression data set was used in Ingenuity Pathway Analysis (IPA), and significant networks were identified. Several of these proteins have been previously implicated in lipid metabolism, while others represent new therapeutic targets or markers for TGCV. Microarray analysis quantified 20743 transcripts, and 252 genes showed significantly altered expression in both TGCV patient cells. Ten altered genes were chosen, 9 of which were successfully confirmed using quantitative RT-PCR. Biological networks of altered genes were analyzed using an IPA search. CONCLUSIONS: We performed the SILAC- and SRM-based identification-through-confirmation study using skin fibroblast cells derived from TGCV patients, and first identified altered proteins specific for TGCV. Microarray analysis also identified changes in gene expression. The functional networks of the altered proteins and genes are discussed. Our findings will be exploited to elucidate the pathogenesis of TGCV and discover clinically relevant molecules for TGCV in the near future.


Subject(s)
Cardiomyopathies/metabolism , Proteomics/methods , Triglycerides/metabolism , Cells, Cultured , Humans , Tandem Mass Spectrometry
10.
J Proteome Res ; 12(6): 2414-21, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23312004

ABSTRACT

The Chromosome-Centric Human Proteome Project (C-HPP) is an international effort for creating an annotated proteomic catalog for each chromosome. The first step of the C-HPP project is to find evidence of expression of all proteins encoded on each chromosome. C-HPP also prioritizes particular protein subsets, such as those with post-translational modifications (PTMs) and those found in low abundance. As participants in C-HPP, we integrated proteomic and phosphoproteomic analysis results from chromosome-independent biomarker discovery research to create a chromosome-based list of proteins and phosphorylation sites. Data were integrated from five independent colorectal cancer (CRC) samples (three types of clinical tissue and two types of cell lines) and lead to the identification of 11,278 proteins, including 8,305 phosphoproteins and 28,205 phosphorylation sites; all of these were categorized on a chromosome-by-chromosome basis. In total, 3,033 "missing proteins", i.e., proteins that currently lack evidence by mass spectrometry, in the neXtProt database and 12,852 unknown phosphorylation sites not registered in the PhosphoSitePlus database were identified. Our in-depth phosphoproteomic study represents a significant contribution to C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000089.


Subject(s)
Chromosomes, Human/metabolism , Colorectal Neoplasms/chemistry , Databases, Protein , Human Genome Project , Neoplasm Proteins/isolation & purification , Phosphopeptides/isolation & purification , Proteome/isolation & purification , Amino Acid Sequence , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression , Gene Expression Profiling , Genome, Human , Humans , Mass Spectrometry , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphopeptides/metabolism , Phosphorylation , Proteome/genetics , Proteome/metabolism
11.
J Proteome Res ; 12(1): 208-13, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23153008

ABSTRACT

The Chromosome-centric Human Proteome Project (C-HPP) aims to define all proteins encoded in each chromosome and especially to identify proteins that currently lack evidence by mass spectrometry. The C-HPP also prioritizes particular protein subsets such as membrane proteins, post-translational modifications, and low-abundance proteins. In this study, we aimed to generate deep profiling of the membrane proteins of human breast cancer tissues on a chromosome-by-chromosome basis using shotgun proteomics. We identified 7092 unique proteins using membrane fractions isolated from pooled breast cancer tissues with high confidence. A total of 3282 proteins were annotated as membrane proteins by Gene Ontology analysis, which covered 45% of the membrane proteins predicted in 20,859 protein-coding genes. Furthermore, we were able to identify 851 membrane proteins that currently lack evidence by mass spectrometry in neXtProt. Our results will contribute to the accomplishment of the primary goal of the C-HPP in identifying so-called "missing proteins" and generating a whole protein catalog for each chromosome.


Subject(s)
Breast Neoplasms , Membrane Proteins , Proteomics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromosomes, Human/genetics , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Mass Spectrometry , Membrane Proteins/classification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Processing, Post-Translational
12.
J Proteome Res ; 11(8): 4201-10, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22716024

ABSTRACT

Since LC-MS-based quantitative proteomics has become increasingly applied to a wide range of biological applications over the past decade, numerous studies have performed relative and/or absolute abundance determinations across large sets of proteins. In this study, we discovered prognostic biomarker candidates from limited breast cancer tissue samples using discovery-through-verification strategy combining iTRAQ method followed by selected reaction monitoring/multiple reaction monitoring analysis (SRM/MRM). We identified and quantified 5122 proteins with high confidence in 18 patient tissue samples (pooled high-risk (n=9) or low-risk (n=9)). A total of 2480 proteins (48.4%) of them were annotated as membrane proteins, 16.1% were plasma membrane and 6.6% were extracellular space proteins by Gene Ontology analysis. Forty-nine proteins with >2-fold differences in two groups were chosen for further analysis and verified in 16 individual tissue samples (high-risk (n=9) or low-risk (n=7)) using SRM/MRM. Twenty-three proteins were differentially expressed among two groups of which MFAP4 and GP2 were further confirmed by Western blotting in 17 tissue samples (high-risk (n=9) or low-risk (n=8)) and Immunohistochemistry (IHC) in 24 tissue samples (high-risk (n=12) or low-risk (n=12)). These results indicate that the combination of iTRAQ and SRM/MRM proteomics will be a powerful tool for identification and verification of candidate protein biomarkers.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carrier Proteins/metabolism , Extracellular Matrix Proteins/metabolism , GPI-Linked Proteins/metabolism , Glycoproteins/metabolism , Amino Acid Sequence , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/isolation & purification , Breast Neoplasms/diagnosis , Carrier Proteins/chemistry , Carrier Proteins/isolation & purification , Chromatography, Ion Exchange , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/isolation & purification , Female , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/isolation & purification , Glycoproteins/chemistry , Glycoproteins/isolation & purification , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Prognosis , Staining and Labeling , Statistics, Nonparametric , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...