Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3166, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672402

ABSTRACT

Turbulent transport is a key physics process for confining magnetic fusion plasma. Recent theoretical and experimental studies of existing fusion experimental devices revealed the existence of cross-scale interactions between small (electron)-scale and large (ion)-scale turbulence. Since conventional turbulent transport modelling lacks cross-scale interactions, it should be clarified whether cross-scale interactions are needed to be considered in future experiments on burning plasma, whose high electron temperature is sustained with fusion-born alpha particle heating. Here, we present supercomputer simulations showing that electron-scale turbulence in high electron temperature plasma can affect the turbulent transport of not only electrons but also fuels and ash. Electron-scale turbulence disturbs the trajectories of resonant electrons responsible for ion-scale micro-instability and suppresses large-scale turbulent fluctuations. Simultaneously, ion-scale turbulent eddies also suppress electron-scale turbulence. These results indicate a mutually exclusive nature of turbulence with disparate scales. We demonstrate the possibility of reduced heat flux via cross-scale interactions.

2.
Space Sci Rev ; 217(1): 17, 2021.
Article in English | MEDLINE | ID: mdl-34720215

ABSTRACT

Small-scale dynamic auroras have spatial scales of a few km or less, and temporal scales of a few seconds or less, which visualize the complex interplay among charged particles, Alfvén waves, and plasma instabilities working in the magnetosphere-ionosphere coupled regions. We summarize the observed properties of flickering auroras, vortex motions, and filamentary structures. We also summarize the development of fundamental theories, such as dispersive Alfvén waves (DAWs), plasma instabilities in the auroral acceleration region, ionospheric feedback instabilities (IFI), and the ionospheric Alfvén resonator (IAR). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00796-w.

3.
Phys Rev Lett ; 118(16): 165002, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474924

ABSTRACT

Impacts of isotope ion mass on trapped-electron-mode (TEM)-driven turbulence and zonal flows in magnetically confined fusion plasmas are investigated. Gyrokinetic simulations of TEM-driven turbulence in three-dimensional magnetic configuration of helical plasmas with hydrogen isotope ions and real-mass kinetic electrons are realized for the first time, and the linear and the nonlinear nature of the isotope and collisional effects on the turbulent transport and zonal-flow generation are clarified. It is newly found that combined effects of the collisional TEM stabilization by the isotope ions and the associated increase in the impacts of the steady zonal flows at the near-marginal linear stability lead to the significant transport reduction with the opposite ion mass dependence in comparison to the conventional gyro-Bohm scaling. The universal nature of the isotope effects on the TEM-driven turbulence and zonal flows is verified for a wide variety of toroidal plasmas, e.g., axisymmetric tokamak and non-axisymmetric helical or stellarator systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...