Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Bot ; 114(1): 179-90, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24879768

ABSTRACT

BACKGROUND AND AIMS: Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. METHODS: Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. KEY RESULTS: Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. CONCLUSIONS: Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth.


Subject(s)
Plant Stems/physiology , Xanthium/physiology , Biomechanical Phenomena , Models, Biological , Plant Stems/growth & development , Wind , Wood/growth & development , Wood/physiology , Xanthium/growth & development
2.
Physiol Plant ; 144(4): 335-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22211925

ABSTRACT

Plants develop branches profusely when grown solitarily, while less so when grown in a dense stand. Such changes in architecture are associated with changes in dry mass allocation and nitrogen use. Here, we studied what traits in plant growth and nitrogen use were influenced by different light climates in the stand. Annual plants (Xanthium canadense) were grown solitarily or in a dense stand. Dry mass growth was analyzed as the product of the net assimilation rate (NAR) and leaf area (LA). Nitrogen use efficiency (NUE) was analyzed as the product of nitrogen productivity (NP) and the mean residence time (MRT) of nitrogen. These growth variables were further factorized into their components. Solitary plants maintained a high NAR, whereas plants in the dense stand decreased the NAR due to mutual shading. Plants in the dense stand developed a larger LA with a higher specific leaf area than solitary plants. Solitary plants had higher NUE due to higher NP. A temporal increase in NUE was attributed to the increase in MRT of nitrogen. Light climate was different between solitary and dense-stand plants, but they took up a comparable amount of nitrogen and used it differently in response to the given light climate. NUE was thus demonstrated to be a useful tool for analyzing the mechanism leading to different N use in plant growth.


Subject(s)
Nitrogen/metabolism , Xanthium/growth & development , Xanthium/metabolism , Biomass , Darkness , Light , Models, Biological , Photosynthesis , Plant Leaves/growth & development , Xanthium/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL