Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304227, 2024.
Article in English | MEDLINE | ID: mdl-38870103

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is a common complication of septic shock and together these conditions carry a high mortality risk. In septic patients who develop severe AKI, renal cortical perfusion is deficient despite normal macrovascular organ blood flow. This intra-renal perfusion abnormality may be amenable to pharmacological manipulation, which may offer mechanistic insight into the pathophysiology of septic AKI. The aim of the current study is to investigate the effects of vasopressin and angiotensin II on renal microcirculatory perfusion in a cohort of patients with septic shock. METHODS AND ANALYSIS: In this single centre, mechanistically focussed, randomised controlled study, 45 patients with septic shock will be randomly allocated to either of the study vasopressors (vasopressin or angiotensin II) or standard therapy (norepinephrine). Infusions will be titrated to maintain a mean arterial pressure (MAP) target set by the attending clinician. Renal microcirculatory assessment will be performed for the cortex and medulla using contrast-enhanced ultrasound (CEUS) and urinary oxygen tension (pO2), respectively. Renal macrovascular flow will be assessed via renal artery ultrasound. Measurement of systemic macrovascular flow will be performed through transthoracic echocardiography (TTE) and microvascular flow via sublingual incident dark field (IDF) video microscopy. Measures will be taken at baseline, +1 and +24hrs following infusion of the study drug commencing. Blood and urine samples will also be collected at the measurement time points. Longitudinal data will be compared between groups and over time. DISCUSSION: Vasopressors are integral to the management of patients with septic shock. This study aims to further understanding of the relationship between this therapy, renal perfusion and the development of AKI. In addition, using CEUS and urinary pO2, we hope to build a more complete picture of renal perfusion in septic shock by interrogation of the constituent parts of the kidney. Results will be published in peer-reviewed journals and presented at academic meetings. TRIAL REGISTRATION: The REPERFUSE study was registered on Clinical Trials.gov (NCT06234592) on the 30th Jan 24.


Subject(s)
Acute Kidney Injury , Microcirculation , Shock, Septic , Vasoconstrictor Agents , Humans , Shock, Septic/drug therapy , Shock, Septic/physiopathology , Vasoconstrictor Agents/therapeutic use , Vasoconstrictor Agents/administration & dosage , Microcirculation/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Kidney/drug effects , Kidney/physiopathology , Kidney/blood supply , Vasopressins/administration & dosage , Vasopressins/therapeutic use , Angiotensin II/administration & dosage , Male , Female , Norepinephrine/administration & dosage , Norepinephrine/therapeutic use , Renal Circulation/drug effects , Middle Aged , Adult
2.
Res Rep Urol ; 16: 65-78, 2024.
Article in English | MEDLINE | ID: mdl-38476861

ABSTRACT

Acute kidney injury (AKI) is a common complication after surgery and the more complex the surgery, the greater the risk. During surgery, patients are exposed to a combination of factors all of which are associated with the development of AKI. These include hypotension and hypovolaemia, sepsis, systemic inflammation, the use of nephrotoxic agents, tissue injury, the infusion of blood or blood products, ischaemia, oxidative stress and reperfusion injury. Given the risks of AKI, it would seem logical to conclude that early identification of patients at risk of AKI would translate into benefit. The conventional markers of AKI, namely serum creatinine and urine output are the mainstay of defining chronic kidney disease but are less suited to the acute phase. Such concerns are compounded in surgical patients given they often have significantly reduced mobility, suboptimal levels of nutrition and reduced muscle bulk. Many patients may also have misleadingly low serum creatinine and high urine output due to aggressive fluid resuscitation, particularly in intensive care units. Over the last two decades, considerable information has accrued with regard to the performance of what was termed "novel" biomarkers of AKI, and here, we discuss the most examined molecules and performance in surgical settings. We also discuss the application of biomarkers to guide patients' postoperative care.


Kidney damage is common after major surgery with a recent study showing almost 1 in 5 patients suffer kidney damage. The usual tests for measuring kidney function are excellent in the outpatient but not so good in acute scenario's. Therefore, there has been a lot of interest in new markers of kidney damage (so-called novel biomarkers) which perform well acutely and allow earlier detection of damage allowing treatment to be started earlier. This article summarises the currently available biomarkers for use post-operatively and points out the different information that can be achieved by using them routinely.

3.
Crit Care ; 26(1): 261, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050737

ABSTRACT

BACKGROUND: Reduced renal perfusion has been implicated in the development of septic AKI. However, the relative contributions of macro- and microcirculatory blood flow and the extent to which impaired perfusion is an intrinsic renal phenomenon or part of a wider systemic shock state remains unclear. METHODS: Single-centre prospective longitudinal observational study was carried out. Assessments were made at Day 0, 1, 2 and 4 after ICU admission of renal cortical perfusion in 50 patients with septic shock and ten healthy volunteers using contrast-enhanced ultrasound (CEUS). Contemporaneous measurements were made using transthoracic echocardiography of cardiac output. Renal artery blood flow was calculated using velocity time integral and vessel diameter. Assessment of the sublingual microcirculation was made using handheld video microscopy. Patients were classified based on the degree of AKI: severe = KDIGO 3 v non-severe = KDIGO 0-2. RESULTS: At study enrolment, patients with severe AKI (37/50) had prolonged CEUS mean transit time (mTT) (10.2 vs. 5.5 s, p < 0.05), and reduced wash-in rate (WiR) (409 vs. 1203 au, p < 0.05) and perfusion index (PI) (485 vs. 1758 au, p < 0.05); differences persisted throughout the entire study. Conversely, there were no differences in either cardiac index, renal blood flow or renal resistive index. Sublingual microcirculatory variables were not significantly different between groups at study enrolment or at any subsequent time point. Although lactate was higher in the severe AKI group at study enrolment, these differences did not persist, and there were no differences in either ScvO2 or ScvCO2-SaCO2 between groups. Patients with severe AKI received higher doses of noradrenaline (0.34 vs. 0.21mcg/kg/min, p < 0.05). Linear regression analysis showed no correlation between mTT and cardiac index (R-0.18) or microcirculatory flow index (R-0.16). CONCLUSION: Renal cortical hypoperfusion is a persistent feature in critically ill septic patients who develop AKI and does not appear to be caused by reductions in macrovascular renal blood flow or cardiac output. Cortical hypoperfusion appears not be associated with changes in the sublingual microcirculation, raising the possibility of a specific renal pathogenesis that may be amenable to therapeutic intervention. Trial Registration Clinical Trials.gov NCT03713307 , 19 Oct 2018.


Subject(s)
Acute Kidney Injury , Shock, Septic , Acute Kidney Injury/complications , Humans , Microcirculation/physiology , Perfusion/adverse effects , Prospective Studies , Renal Circulation , Shock, Septic/complications
4.
Shock ; 55(4): 479-487, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32890313

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common complication of COVID-19 critical illness but the pathophysiology is uncertain. Some evidence has indicated that a vascular aetiology may be implicated. We used contrast-enhanced ultrasound (CEUS) and echocardiography to study renal perfusion and global blood flow and compared our findings with measurements taken in a group of septic shock patients and healthy volunteers. METHODS: Prospective case-control study. Renal perfusion variables were assessed with CEUS; macrovascular blood flow was assessed using Doppler analysis of large renal vessels; echocardiography was used to assess right and left heart function and cardiac output. RESULTS: CEUS-derived parameters were reduced in COVID-19 associated AKI compared with healthy controls (perfusion index 3,415 vs. 548 a.u., P = 0·001; renal blood volume 7,794 vs. 3,338 a.u., P = 0·04). Renal arterial flow quantified using time averaged peak velocity was also reduced compared with healthy controls (36·6 cm/s vs. 20·9 cm/s, P = 0.004) despite cardiac index being similar between groups (2.8 L/min/m2 vs. 3.7 L/min/m2, P = 0.07). There were no differences in CEUS-derived or cardiac parameters between COVID-19 and septic shock patients but patients with septic shock had more heterogeneous perfusion variables. CONCLUSION: Both large and small vessel blood flow is reduced in patients with COVID-19 associated AKI compared with healthy controls, which does not appear to be a consequence of right or left heart dysfunction. A reno-vascular pathogenesis of COVID-19 AKI seems likely.


Subject(s)
Acute Kidney Injury/physiopathology , COVID-19/complications , COVID-19/physiopathology , Critical Illness , Heart Function Tests , Renal Circulation/physiology , Ultrasonography , Acute Kidney Injury/diagnostic imaging , Aged , COVID-19/diagnostic imaging , Case-Control Studies , Contrast Media , Female , Humans , Male , Middle Aged , Prospective Studies , Regional Blood Flow/physiology , Shock, Septic/complications , Shock, Septic/physiopathology
5.
Shock ; 55(6): 752-758, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33021572

ABSTRACT

ABSTRACT: Critically ill patients with COVID-19 infection frequently exhibit a hyperinflammatory response and develop organ failures; however, the underlying mechanisms are unclear. We investigated the microcirculatory, endothelial, and inflammatory responses in critically ill COVID-19 patients and compared them to a group of patients with septic shock in a prospective observational case control study. Thirty critically ill patients with COVID-19 were compared to 33 patients with septic shock.Measurements of sublingual microcirculatory flow using Incident Dark Field video-microscopy and serial measurements of IL-6 and Syndecan-1 levels were performed. COVID-19 patients had significantly less vasoactive drug requirement and lower plasma lactate than those with septic shock. Microcirculatory flow was significantly worse in septic patients than those with COVID-19 (MFI 2.6 vs 2.9 p 0.02, PPV 88 vs 97% P < 0.001). IL-6 was higher in patients with septic shock than COVID-19 (1653 vs 253 pg/mL, P 0.03). IL-6 levels in COVID 19 patients were not elevated compared to healthy controls except on the day of ICU admission. Syndecan-1 levels were not different between the two pathological groups. Compared to patients with undifferentiated septic shock an overt shock state with tissue hypoperfusion does not appear typical of COVID-19 infection. There was no evidence of significant sublingual microcirculatory impairment, widespread endothelial injury or marked inflammatory cytokine release in this group of critically ill COVID-19 patients.


Subject(s)
COVID-19/blood , Endothelium, Vascular/metabolism , Interleukin-6/blood , Microcirculation , SARS-CoV-2/metabolism , Shock, Septic/blood , Syndecan-1/blood , Aged , COVID-19/pathology , Critical Illness , Endothelium, Vascular/pathology , Female , Humans , Inflammation/blood , Inflammation/pathology , Male , Middle Aged , Prospective Studies , Shock, Septic/pathology
6.
Shock ; 54(1): 15-20, 2020 07.
Article in English | MEDLINE | ID: mdl-31764623

ABSTRACT

BACKGROUND: The current standard of analyzing microcirculatory video microscopy is time-consuming and occurs away from the patient, limiting its clinical utility. Point-of-care assessment with incident dark field (IDF) microscopy, however, may offer greater clinical applicability. We aimed to determine the reproducibility of the Point of Care Microcirculation (POEM) tool when used at the bedside in critically ill patients. METHODS: A multinational, multicenter, prospective observational study of adult intubated patients was undertaken during a 9-month period in Germany, the United Kingdom, and the United States. A user recorded a batch of four standardized video clips from each patient, calculated a POEM score and recorded the time for image acquisition. A second user blinded to the first repeated this process. Patients with video clips of poor quality were excluded. At a later date, the two users again blinded themselves to reassess both their own clips and those of the other user. Basic demographic information was recorded. Intrauser reliability (an individual user rescoring the same batch of videos after blinding), interuser reliability (a second user rescoring the other user's video batch after blinding), and test-retest reliability (two users individually capturing videos and recording POEM scores) were assessed using a linearly weighted kappa statistic for ordinal data. RESULTS: Sixty-five patients were included in the final analysis. Observer agreement was substantial for all tests. Intrauser agreement was 0.73 (0.95 CI 0.64-0.81), interuser agreement 0.71 (0.95 CI 0.63-0.79), and test-retest agreement 0.75 (0.95 CI 0.65-0.86). Average time to record videos and assess POEM scores 7:34 ± 3:37 minutes. CONCLUSIONS: Point-of-care assessment of the microcirculation using IDF video microscopy and POEM scoring appears to be both a feasible and reproducible approach to microcirculatory assessment. Testing of the score in critically ill patients showed substantial agreement within and between investigators, but further studies should validate its utility as a tool to guide shock resuscitation.


Subject(s)
Critical Illness , Microcirculation , Point-of-Care Testing , Critical Illness/therapy , Female , Humans , Male , Microcirculation/physiology , Microscopy, Video/methods , Microscopy, Video/standards , Middle Aged , Prospective Studies , Reproducibility of Results
7.
Aviat Space Environ Med ; 85(12): 1214-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25479264

ABSTRACT

BACKGROUND: There is a widely held belief that strenuous exercise should be avoided on arrival at high altitude (HA) and during acclimatization. Data from chamber studies are contradictory and the studies are usually of short duration, therefore differing from the "real world." METHODS: We studied 48 trekkers during a 10-d ascent to 16,827 ft (5129 m) in the Cordillera Real area of Bolivia. Borg Rating of Perceived Exertion (RPE) scores were recorded for the hardest perceived exertion during the day after ascents to 12,576, 14,600, and 16,827 ft (3833, 4450, and 5129 m). Heart rate, Spo2, and Lake Louise Score (LLS) were recorded simultaneously. Statistical testing was performed using SPSS 21 software. A P-value of ≤ 0.05 was deemed significant. RESULTS: Acute mountain sickness (AMS) rates were higher after trekking days with higher levels of perceived exertion. The LLS was higher in those with a Borg RPE score ≥ 15 both following exercise (mean LLS 2.6 vs. 1.7) and at rest the following day (mean LLS 2.7 vs. 1.7). Heart rate was higher in those with high Borg RPE scores (80 vs. 87) and oxygen saturations lower at rest (86 vs. 83) the following morning. DISCUSSION: This data lends weight to the advice of moderate exertion during a trek to HA and suggests that reducing perceived exertion may reduce AMS.


Subject(s)
Altitude Sickness/physiopathology , Mountaineering/physiology , Perception , Physical Exertion/physiology , Adult , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Oxygen/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...