Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(17): 10510-10517, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30058803

ABSTRACT

Metrological traceability to common references supports the comparability of chemical measurement results produced by different analysts, at various times, and at separate places. Ideally, these references are realizations of base units of the International System of Units (SI). ISO/IEC 17025 (Clause 6.5) states that traceability of measurement results is a necessary attribute of analytical laboratory competence, and as such, has become compulsory in many industries, especially clinical diagnostics and healthcare. Historically, claims of traceability for organic chemical measurements have relied on calibration chains anchored on unique reference materials with linkage to the SI that is tenuous at best. A first-of-its-kind National Institute of Standards and Technology (NIST) reference material, ultrapure and extensively characterized PS1 Benzoic Acid Primary Standard for quantitative NMR (qNMR), serves as a definitive, primary reference (calibrant) that assuredly links the qNMR spectroscopy technique to SI units. As qNMR itself is a favorable method for accurate, direct characterization of chemical reference materials, PS1 is a standard for developing other traceable standards and is intended to establish traceability for the measurement of thousands of organic chemical species. NIST PS1 will play a critical role in directly promoting accuracy and worldwide comparability of measurement results produced by the chemical measurement community, supporting the soundness of clinical diagnostics, food safety and labeling, forensic investigation, drug development, biomedical research, and chemical manufacturing. Confidence in this link to the SI was established through (i) unambiguous identification of chemical structure; (ii) determinations of isotopic composition and molecular weight; (iii) evaluation of the respective molecular amount by multiple primary measurement procedures, including qNMR and coulometry; and (iv) rigorous evaluation of measurement uncertainty using state-of-the-art statistical methods and measurement models.

2.
J Histochem Cytochem ; 37(1): 49-56, 1989 Jan.
Article in English | MEDLINE | ID: mdl-2908883

ABSTRACT

We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.


Subject(s)
Horseradish Peroxidase/metabolism , Isoenzymes/metabolism , Pancreas/metabolism , Peroxidases/metabolism , Animals , Cytoplasmic Granules/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Isoelectric Point , Lysosomes/metabolism , Male , Microscopy, Electron , Rats , Rats, Inbred Strains
3.
In Vitro Cell Dev Biol ; 23(7): 465-73, 1987 Jul.
Article in English | MEDLINE | ID: mdl-3610944

ABSTRACT

Methods have been developed for culturing a dividing population of morphologically differentiated rat parotid, lacrimal, and pancreatic acinar cells in vitro. Isolated acinar cells were plated onto tissue culture dishes coated with a three-dimensional, reconstituted basement membrane gel. After attachment in Ham's nutrient mixture F12, the cells were cultured at 35 degrees C in F12 supplemented with 10% heat inactivated rat serum, epidermal growth factor, dexamethasone, insulin, transferrin, selenium, putrescine, reduced glutathione, ascorbate, penicillin, streptomycin, and the appropriate secretagogue. Under these conditions, the cells attached rapidly and DNA synthesis was initiated within 2 to 3 d. Although the cells flattened on the substratum, they continued to maintain their differentiated morphology. The cells contained secretory granules, and the secretory enzymes peroxidase and amylase could be detected. The use of a reconstituted basement membrane gel proved critical for the attachment and growth of exocrine acinar cells.


Subject(s)
Lacrimal Apparatus/cytology , Pancreas/cytology , Parotid Gland/cytology , Animals , Basement Membrane/cytology , Basement Membrane/ultrastructure , Cell Division , Cells, Cultured , Culture Media , DNA Replication , Gels , Kinetics , Lacrimal Apparatus/ultrastructure , Male , Microscopy, Electron , Microscopy, Electron, Scanning , Pancreas/ultrastructure , Parotid Gland/ultrastructure , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...