Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PPAR Res ; 2011: 179454, 2011.
Article in English | MEDLINE | ID: mdl-22013433

ABSTRACT

Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O(2) consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.

2.
Mol Endocrinol ; 23(11): 1876-84, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19819989

ABSTRACT

Human adipose tissue secretes a number of proinflammatory mediators that may contribute to the pathophysiology of obesity-related disorders. Understanding the regulatory pathways that control their production is paramount to developing effective therapeutics to treat these diseases. Using primary human adipose-derived stem cells as a source of preadipocytes and in vitro differentiated adipocytes, we found IL-8 and monocyte chemoattractant protein-1 (MCP-1) are constitutively secreted by both cell types and induced in response to serum deprivation. MicroRNA profiling revealed the rapid induction of microRNA 132 (miR-132) in these cells when switched to serum-free medium. Furthermore, miR-132 overexpression was sufficient to induce nuclear factor-kappaB translocation, acetylation of p65, and production of IL-8 and MCP-1. Inhibitors of miR-132 decreased acetylated p65 and partially inhibited the production of IL-8 and MCP-1 induced by serum deprivation. MiR-132 was shown to inhibit silent information regulator 1 (SirT1) expression through a miR-132 binding site in the 3'-untranslated region of SirT1. Thus, in response to nutritional availability, induction of miR-132 decreases SirT1-mediated deacetylation of p65 leading to activation of nuclear factor-kappaB and transcription of IL-8 and MCP-1 in primary human preadipocytes and in vitro differentiated adipocytes.


Subject(s)
Chemokines/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Nutritional Sciences , Sirtuin 1/physiology , 3' Untranslated Regions , Adipocytes/metabolism , Adipose Tissue/cytology , Adult , Binding Sites , Chemokine CCL2/metabolism , Female , Humans , Interleukin-8/metabolism , MicroRNAs/genetics , Sirtuin 1/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...