Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(43): 40713-40728, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929153

ABSTRACT

Reduction-sulfurization smelting is an effective method for treating solid hazardous waste and recovering valuable components from them. In this work, a waste hydrogenation catalyst (WHC), an automotive exhaust purifier waste catalyst (AEPWC), a vulcanizer, and laterite nickel ore were mixed, and the reduction smelting behavior of this solid waste was investigated. XRD (X-ray diffractometry), TG-DSC (thermogravimetric/differential scanning calorimetry), SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), OM (optical microscopy), and ICP-OES (inductively coupled plasma-optical emission spectrometry) methods were used to examine the chemical composition, thermal stability, structure, and morphology, as well as the metal content of the samples. Under the Al2O3-FeO-SiO2 ternary slag system, at a smelting temperature of 1450 °C, smelting time of 2 h, mass ratio of coke, pyrite, and CaO to waste catalysts of 16, 25, and 0%, respectively, nickel (Ni) and molybdenum (Mo) recovery reached 91.1 and 92.9%, respectively, where average PGMs (platinum group metals, platinum (Pt), palladium (Pd), rhodium (Rh)) recovery reached 96%, although vanadium (V) recovery was only 25.1%. The characterization of the slag shows that Al, Si, and Fe are mainly bound in the form of chemical compounds, while V is intercalated with ferro- or aluminosilicate, which hinders the reduction and sulfurization of V. A series of tests using reduction smelting without sulfurization were also conducted, after which the Ni, Mo, and V recovery reached 96.8, 96.6, and 89.7%, respectively, while PGMs (Pt, Pd, Rh) recovery ranges from 90.2 to 98.0%. The collaborative disposal of primary ore and multisource solid waste has been achieved through two process paths: reducing smelting and reducing sulfurization smelting, which provide reference for the collaborative smelting of multisource secondary resources.

2.
Adv Colloid Interface Sci ; 309: 102778, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36209685

ABSTRACT

The electroacoustic technique has been successfully used to determine the zeta potential of concentrated aqueous suspensions for over thirty years. This article reviews its use in mineral processing, ceramics, zeolites, and other industrial minerals and in particular identifies the isoelectric points of these materials, as this parameter is crucial for determining colloidal stability and hence subsequent processing. Some benefits of this technique over the traditional electrokinetic measurement techniques are also highlighted. Finally, the application of the technique to polymer lattices is summarized.


Subject(s)
Zeolites , Suspensions , Water , Polymers
3.
Adv Colloid Interface Sci ; 308: 102769, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36116142

ABSTRACT

Despite various initiatives and efforts, plastic solid waste (PSW) has become a major global problem due to decades of relentless use of plastics. Since non-biodegradable plastics can persist in the environment for hundreds of years, threatening animal and human life, discarding them into the environment is not a viable option. Plastic recycling is a critical research area that requires urgent attention since less than 10% of the seven billion tons of globally generated plastic waste has been recycled so far. With recent technological developments, it is now possible to recycle many types of PSW using a variety of methods. This review provides an overview of the froth flotation technology that is currently being researched for PSW recycling. Fundamental working principles, the current state of the development, and limitations of this technique are reviewed. It is suggested that froth flotation with continuous development has tremendous potential to result in a more efficient and environmentally friendly approach to PSW recycling.


Subject(s)
Plastics , Refuse Disposal , Humans , Recycling/methods , Refuse Disposal/methods , Solid Waste
4.
Adv Colloid Interface Sci ; 279: 102142, 2020 May.
Article in English | MEDLINE | ID: mdl-32244063

ABSTRACT

The rare-earth elements (REE), which encompass the fifteen metallic elements of the lanthanoid series of the periodic table, yttrium and occasionally scandium, have gained enormous public, economic and scientific attention in recent years. These elements, which have been found in over 250 minerals, are of high economic and strategic importance to many high-technology industries. As such they have been designated as critical materials by several countries and many new deposits are being developed. Rare-earth mineral (REM) deposits can be broadly classified into four geological environments: carbonates, alkaline/peralkaline igneous rocks, placers and ion adsorption clays. Apart from ion adsorption clay deposits, which require no mineral processing steps, froth flotation is the most applied beneficiation technique. This paper reviews the flotation of REM, covering their surface chemical properties as well as the various flotation reagents which have been employed.

5.
Materials (Basel) ; 11(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486411

ABSTRACT

In powder bed fusion additive manufacturing, the powder feedstock quality is of paramount importance; as the process relies on thin layers of powder being spread and selectively melted to manufacture 3D metallic components. Conventional powder quality assessments for additive manufacturing are limited to particle morphology, particle size distribution, apparent density and flowability. However, recent studies are highlighting that these techniques may not be the most appropriate. The problem is exacerbated when studying aluminium powders as their complex cohesive behaviors dictate their flowability. The current study compares the properties of three different AlSi7Mg powders, and aims to obtain insights about the minimum required properties for acceptable powder feedstock. In addition to conventional powder characterization assessments, the powder spread density, moisture sorption, surface energy, work of cohesion, and powder rheology, were studied. This work has shown that the presence of fine particles intensifies the pick-up of moisture increasing the total particle surface energy as well as the inter-particle cohesion. This effect hinders powder flow and hence, the spreading of uniform layers needed for optimum printing. When spherical particles larger than 48 µm with a narrow particle distribution are present, the moisture sorption as well as the surface energy and cohesion characteristics are decreased enhancing powder spreadability. This result suggest that by manipulating particle distribution, size and morphology, challenging powder feedstock such as Al, can be optimized for powder bed fusion additive manufacturing.

6.
Microsc Microanal ; 24(3): 238-248, 2018 06.
Article in English | MEDLINE | ID: mdl-29860961

ABSTRACT

A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.

7.
Acta Biomater ; 10(7): 3317-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24681371

ABSTRACT

Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions.


Subject(s)
Copper/chemistry , Gases/chemistry , Phosphates/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Solubility , Spectroscopy, Fourier Transform Infrared
8.
Microsc Res Tech ; 77(3): 225-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390705

ABSTRACT

A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals.

9.
Langmuir ; 25(9): 4880-5, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19341287

ABSTRACT

We report the use of atomic force microscopy (AFM) to study the interactions between silica glass colloidal probes and charged microbubbles created using one of two different surfactants: anionic sodium dodecyl sulfate (SDS) and cationic dodecyl trimethylammonium bromide (DTAB) in an aqueous environment. On close approach between the glass probe and a SDS microbubble, an appreciable repulsive force was observed prior to contact. This was not observed when using a DTAB microbubble, where only attractive forces were observed prior to contact. zeta-potential analysis showed that silica surfaces are negatively charged across the pH range of 3-10 when surfactant is not present. Addition of SDS did not alter the zeta-potential significantly, indicating that adsorption onto the particle surface did not occur. Conversely, the addition of DTAB decreased the negativity of the zeta-potential, reversing the sign, indicating that adsorption had occurred. This analysis was used in the removal of fine particles from suspension using charged microbubbles. Silica particles were recovered using positively charged microbubbles from DTAB but not when using negatively charged microbubbles generated from SDS. Taken together, the data suggest that repulsive long-range interactions were responsible for the selective attachment of silica particles to microbubbles in a charge-dependent manner.

10.
J Colloid Interface Sci ; 329(1): 167-72, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18950784

ABSTRACT

In this study, microwave irradiation is used to modify ilmenite surface chemistry to enhance the adsorption of surfactants and the air bubble attachment. The results indicate that microwave irradiation can increase ilmenite flotation recovery by 20%. A positron emission particle tracking technique is used to study the dynamic behaviour of ilmenite particles in a Denver cell. The data shows that the poor flotation recovery of ilmenite is not only due to the reduce probability of ilmenite being captured by air bubbles, but also the short residence time of the particles remaining in the froth phase. The ilmenite particles can be frequently captured by air bubbles, but dropped to the bulk liquid from the froth phase, normally over 15 s. Microwave irradiation changes the ilmenite flow pattern in the Denver cell. The average time of ilmenite remaining in froth phase is increased from 11.5 to 29.1 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...