Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810262

ABSTRACT

Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.


Subject(s)
Cyanobacteria Toxins , Harmful Algal Bloom , Human Activities/history , Lakes/microbiology , Cyanobacteria , Environmental Monitoring , Geography , Guatemala , History, Ancient , Humans , Microcystins , Microcystis , Radiometric Dating , Water Quality
2.
Environ Monit Assess ; 189(1): 23, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27987131

ABSTRACT

Urbanization, agriculture, and other land transformations can affect water quality, decrease species biodiversity, and increase metal and nutrient concentrations in aquatic systems. Metal pollution, in particular, is a reported consequence of elevated anthropogenic inputs, especially from urbanized areas. The objectives of this study were to quantify metal (Cu, Al, Cd, Ni, and Pb) concentrations in the waters and biota of four streams in South Georgia, USA, and relate metal concentrations to land use and abiotic and biotic stream processes. Additionally, macrophytes, invertebrates, and fish were identified to assess biodiversity at each site. Metal concentrations in the three trophic levels differed among sites and species, correlating to differences in land use surrounding the rivers. The highest metal concentrations (except Al) were found in the streams most impacted by urbanization and development. Al concentrations were highest in streams surrounded by land dominated by forested areas. Metal content in macrophytes reflected metal concentrations in the water and was at least three orders of magnitude higher than any other trophic level. Despite metal concentration differences, all four streams contained similar water quality and were healthy based on macroinvertebrate community structure. This study provides insight into the impact of urbanization and the fate and effects of metals in river ecosystems with varying degrees of anthropogenic impact.


Subject(s)
Environmental Monitoring , Metals/analysis , Rivers/chemistry , Water Quality , Agriculture , Animals , Biodiversity , Biota , Ecosystem , Fishes , Humans , Invertebrates , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...