Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 109(1): 135-147, 2024 01.
Article in English | MEDLINE | ID: mdl-36951012

ABSTRACT

By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.


Subject(s)
Acid Sensing Ion Channels , Proprioception , Animals , Mice , Acid Sensing Ion Channels/metabolism , Muscle Spindles/physiology , Proprioception/physiology , Sensory Receptor Cells/metabolism
2.
Sci Rep ; 13(1): 6555, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085544

ABSTRACT

Pompe disease is a debilitating medical condition caused by a functional deficiency of lysosomal acid alpha-glucosidase (GAA). In addition to muscle weakness, people living with Pompe disease experience motor coordination deficits including an instable gait and posture. We reasoned that an impaired muscle spindle function might contribute to these deficiencies and therefore analyzed proprioception as well as muscle spindle structure and function in 4- and 8-month-old Gaa-/- mice. Gait analyses showed a reduced inter-limb and inter-paw coordination in Gaa-/- mice. Electrophysiological analyses of single-unit muscle spindle proprioceptive afferents revealed an impaired sensitivity of the dynamic and static component of the stretch response. Finally, a progressive degeneration of the sensory neuron and of the intrafusal fibers was detectable in Gaa-/- mice. We observed an increased abundance and size of lysosomes, a fragmentation of the inner and outer connective tissue capsule and a buildup of autophagic vacuoles in muscle spindles from 8-month-old Gaa-/- mice, indicating lysosomal defects and an impaired autophagocytosis. These results demonstrate a structural and functional degeneration of muscle spindles and an altered motor coordination in Gaa-/- mice. Similar changes could contribute to the impaired motor coordination in patients living with Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Muscular Diseases , Mice , Animals , Glycogen Storage Disease Type II/genetics , Muscle Spindles , Muscle, Skeletal , Disease Models, Animal , alpha-Glucosidases/genetics , Glucan 1,4-alpha-Glucosidase
3.
Muscle Nerve ; 66(1): 96-105, 2022 07.
Article in English | MEDLINE | ID: mdl-35373353

ABSTRACT

INTRODUCTION/AIMS: The muscle relaxant methocarbamol and the antimyotonic drug mexiletine are widely used for the treatment of muscle spasms, myotonia, and pain syndromes. To determine whether these drugs affect muscle spindle function, we studied their effect on the resting discharge and on stretch-induced action potential frequencies of proprioceptive afferent neurons. METHODS: Single unit action potential frequencies of proprioceptive afferents from muscle spindles in the murine extensor digitorum longus muscle of adult C57BL/6J mice were recorded under resting conditions and during ramp-and-hold stretches. Maximal tetanic force of the same muscle after direct stimulation was determined. High-resolution confocal microscopy analysis was performed to determine the distribution of Nav 1.4 channels, a potential target for both drugs. RESULTS: Methocarbamol and mexiletine inhibited the muscle spindle resting discharge in a dose-dependent manner with IC50 values around 300 µM and 6 µM, respectively. With increasing concentrations of both drugs, the response to stretch was also affected, with the static sensitivity first followed by the dynamic sensitivity. At high concentrations, both drugs completely blocked muscle spindle afferent output. Both drugs also reversibly reduced the specific force of the extensor digitorum longus muscle after tetanic stimulation. Finally, we present evidence for the presence and specific localization of the voltage-gated sodium channel Nav 1.4 in intrafusal fibers. DISCUSSION: In this study we demonstrate that both muscle relaxants affect muscle spindle function, suggesting impaired proprioception as a potential side effect of both drugs. Moreover, our results provide additional evidence of a peripheral activity of methocarbamol and mexiletine.


Subject(s)
Methocarbamol , Muscle Spindles , Animals , Mexiletine/pharmacology , Mice , Mice, Inbred C57BL , Muscle Spindles/physiology , Muscle, Skeletal/physiology , Neurons, Afferent/physiology
4.
Skelet Muscle ; 11(1): 3, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33407830

ABSTRACT

Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.


Subject(s)
Muscle Spindles , Muscular Dystrophies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...