Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
iScience ; 27(1): 108770, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38261919

ABSTRACT

The Centers for Disease Control and Prevention promoted the Test-to-Stay (TTS) program to facilitate in-person instruction in K-12 schools during COVID-19. This program delineates guidelines for schools to regularly test students and staff to minimize risks of infection transmission. TTS enrollment can be implemented via two different consent models: opt-in, in which students do not test regularly by default, and the opposite, opt-out model. We study the impacts of the two enrollment approaches on testing and positivity rates with data from 259 schools in Illinois. Our results indicate that after controlling for other covariates, schools following the opt-out model are associated with 84% higher testing rate and 30% lower positivity rate. If all schools adopted the opt-out model, 20% of the total lost school days could have been saved. The lower positivity rate among the opt-out group is largely explained by the higher testing rate in these schools, a manifestation of status quo bias.

2.
Phys Med Biol ; 68(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37321248

ABSTRACT

Objective. This study aims to evaluate radiofrequency (RF) shielding effectiveness (SE), gradient-induced eddy current, magnetic resonance (MR) susceptibility, and positron emission tomography (PET) photon attenuation of six shielding materials: copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and a spray-on conductive coating.Approach. We evaluated the six shielding materials by implementing them on identical clear plastic enclosures. We measured the RF SE and eddy current in benchtop experiments (outside of the MR environment) and in a 3T MR scanner. The magnetic susceptibility performance was evaluated in the same MR scanner. Additionally, we measured their effects on PET detectors, including global coincidence time resolution, global energy resolution, and coincidence count rate.Main results. The RF SEs for copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and conductive coating enclosures were 56.8 ± 5.8, 63.9 ± 4.3, 33.1 ± 11.7, 43.6 ± 4.5, 52.7 ± 4.6, and 47.8 ±7.1 dB, respectively, in the benchtop experiment. Copper plate and copper tape experienced the most eddy current at 10 kHz in the benchtop experiment and also generated the largest ghosting artifacts in the MR scanner. Stainless steel mesh had the highest mean absolute difference (7.6 ±0.2 Hz) compared to the reference in the MR susceptibility evaluation. The carbon fiber fabric and phosphor bronze mesh enclosures caused the largest photon attenuation, reducing the coincidence count rate by 3.3%, while the rest caused less than 2.6%.Significance. The conductive coating proposed in this study is shown to be a high-performance Faraday cage material for PET/MRI applications based on its overall performance in all the experiments conducted in this study, as well as its ease and flexibility of manufacturing. As a result, it will be selected as the Faraday cage material for our second-generation MR-compatible PET insert.


Subject(s)
Copper , Stainless Steel , Carbon Fiber , Phantoms, Imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods
3.
Med Phys ; 50(6): 3389-3400, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36912373

ABSTRACT

BACKGROUND: Simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) has shown promise in acquiring complementary multiparametric information of disease. However, designing these hybrid imaging systems is challenging due to the propensity for mutual interference between the PET and MRI subsystems. Currently, there are integrated PET/MRI systems for clinical applications. For neurologic imaging, a brain-dedicated PET insert provides superior spatial resolution and sensitivity compared to body PET scanners. PURPOSE: Our first-generation prototype brain PET insert ("PETcoil") demonstrated RF-penetrability and MR-compatibility. In the second-generation PETcoil system, all analog silicon photomultiplier (SiPM) signal digitization is moved inside the detectors, which results in substantially better PET detector performance, but presents a greater technical challenge for achieving MR-compatibility. In this paper, we report results from MR-compatibility studies of two fully assembled second-generation PET insert detector modules. METHODS: We studied the effect of the presence of the two second-generation TOF-PET insert detectors on parameters that affect MR image quality and evaluated TOF-PET detector performance under different MRI pulse sequence conditions. RESULTS: With the presence of operating PET detectors, no RF noise peaks were induced in the MR images, but the relative average noise level was increased by 15%, which led to a 3.1 to 4.2-dB degradation in MR image signal-to-noise ratio (SNR). The relative homogeneity of MR images degraded by less than 1.5% with the two operating TOF-PET detectors present. The reported results also indicated that ghosting artifacts (percent signal ghosting (PSG) ⩽ 1%) and MR susceptibility artifacts (0.044 ppm) were insignificant. The PET detector data showed a relative change of less than 5% in detector module performance between running outside and within the MR bore under different MRI pulse sequences except for energy resolution in EPI sequence (13% relative difference). CONCLUSIONS: The PET detector operation did not cause any significant artifacts in MR images and the performance and time-of-flight (TOF) capability of the former were preserved under different tested MR conditions.


Subject(s)
Magnetic Resonance Imaging , Multimodal Imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Signal-To-Noise Ratio , Phantoms, Imaging
4.
Magn Reson Med ; 87(6): 2885-2900, 2022 06.
Article in English | MEDLINE | ID: mdl-35142398

ABSTRACT

PURPOSE: Develop a deflectable intracardiac MR imaging (ICMRI) guiding-sheath to accelerate imaging during MR-guided electrophysiological (EP) interventions for radiofrequency (500 kHz) ablation (RFA) of arrythmia. Requirements include imaging at three to five times surface-coil SNR in cardiac chambers, vascular insertion, steerable-active-navigation into cardiac chambers, operation with ablation catheters, and safe levels of MR-induced heating. METHODS: ICMRI's 6 mm outer-diameter (OD) metallic-braided shaft had a 2.6 mm OD internal lumen for ablation-catheter insertion. Miniature-Baluns (MBaluns) on ICMRI's 1 m shaft reduced body-coil-induced heating. Distal section was a folded "star"-shaped imaging-coil mounted on an expandable frame, with an integrated miniature low-noise-amplifier overcoming cable losses. A handle-activated movable-shaft expanded imaging-coil to 35 mm OD for imaging within cardiac-chambers. Four MR-tracking micro-coils enabled navigation and motion-compensation, assuming a tetrahedron-shape when expanded. A second handle-lever enabled distal-tip deflection. ICMRI with a protruding deflectable EP catheter were used for MR-tracked navigation and RFA using a dedicated 3D-slicer user-interface. ICMRI was tested at 3T and 1.5T in swine to evaluate (a) heating, (b) cardiac-chamber access, (c) imaging field-of-view and SNR, and (d) intraprocedural RFA lesion monitoring. RESULTS: The 3T and 1.5T imaging SNR demonstrated >400% SNR boost over a 4 × 4 × 4 cm3 FOV in the heart, relative to body and spine arrays. ICMRI with MBaluns met ASTM/IEC heating limits during navigation. Tip-deflection allowed navigating ICMRI and EP catheter into atria and ventricles. Acute-lesion long-inversion-time-T1-weighted 3D-imaging (TWILITE) ablation-monitoring using ICMRI required 5:30 min, half the time needed with surface arrays alone. CONCLUSION: ICMRI assisted EP-catheter navigation to difficult targets and accelerated RFA monitoring.


Subject(s)
Catheter Ablation , Magnetic Resonance Imaging , Animals , Arrhythmias, Cardiac , Catheter Ablation/methods , Equipment Design , Heart Atria , Magnetic Resonance Imaging/methods , Swine
6.
Med Phys ; 48(11): 7283-7298, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34520574

ABSTRACT

PURPOSE: To develop an endovaginal MRI array that provides signal enhancement forward into the posterior parametrium and sideways into the vaginal wall, accelerating multiple-contrast detection of residual tumors that survive external beam radiation. The array's enclosure should form an obturator for cervical cancer brachytherapy, allowing integration with MRI-guided catheter placement, CT, and interstitial radiation dose delivery. METHODS: The endovaginal array consisted of forward-looking and sideways-looking components. The forward-looking element imaged the cervix and posterior endometrium, and the sideways-looking elements imaged the vaginal wall. Electromagnetic simulation was performed to optimize the geometry of a forward-looking coil placed on a conductive-metallic substrate, extending the forward penetration above the coil's tip. Thereafter, an endovaginal array with one forward-looking coil and four sideways-looking elements was constructed and tested at 1.5 Tesla in saline and gel phantoms, and three sexually mature swine. Each coil's tuning, matching, and decoupling were optimized theoretically, implemented with electronic circuits, and validated with network-analyzer measurements. The array enclosure emulates a conventional brachytherapy obturator, allowing use of the internal imaging array together with tandem coils and interstitial catheters, as well as use of the enclosure alone during CT and radiation delivery. To evaluate the receive magnetic field ( B 1 - ) spatial profile, the endovaginal array's specific absorption-rate (SAR) distribution was simulated inside a gel ASTM phantom to determine extreme heating locations in advance of a heating test. Heating tests were then performed during high SAR imaging in a gel phantom at the predetermined locations, testing compliance with MRI safety standards. To assess array imaging performance, signal-to-noise-ratios (SNR) were calculated in a saline phantom and in vivo. Swine images were acquired with the endovaginal array combined with the scanner's body and spine arrays. RESULTS: Simulated B 1 - profiles for the forward-looking lobe pattern, obtained while varying several geometric parameters, disclosed that a forward-looking coil placed on a metal-backed substrate could double the effective forward penetration from approximately 25 to ∼40 mm. An endovaginal array, enclosed in an obturator enclosure was then constructed, with all coils tuned, matched, and decoupled. The ASTM gel-phantom SAR test showed that peak local SAR was 1.2 W/kg in the forward-looking coil and 0.3 W/kg in the sideways-looking elements, well within ASTM/FDA/IEC guidelines. A 15-min 4 W/kg average SAR imaging experiment resulted in less than 2o C temperature increase, also within ASTM/FDA/IEC heating limits. In a saline phantom, the forward-looking coil and sideways-looking array's SNR was four to eight times, over a 20-30 mm field-of-view (FOV), and five to eight times, over a 15-25 mm FOV, relative to the spine array's SNR, respectively. In three sexually mature swine, the forward-looking coil provided a 5 + 0.2 SNR enhancement factor within the cervix and posterior endometrium, and the sideways-looking array provided a 4 + 0.2 SNR gain factor in the vaginal wall, relative to the Siemens spine array, demonstrating that the array could significantly reduce imaging time. CONCLUSIONS: Higher SNR gynecological imaging is supported by forward-looking and sideways-looking coils. A forward-looking endovaginal coil for cervix and parametrium imaging was built with optimized metal backing. Array placement within an obturator enhanced integration with the brachytherapy procedure and accelerated imaging for detecting postexternal-beam residual tumors.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Animals , Equipment Design , Female , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Swine , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
7.
Sci Rep ; 11(1): 6264, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731722

ABSTRACT

Many educational institutions have partially or fully closed all operations to cope with the challenges of the ongoing COVID-19 pandemic. In this paper, we explore strategies that such institutions can adopt to conduct safe reopening and resume operations during the pandemic. The research is motivated by the University of Illinois at Urbana-Champaign's (UIUC's) SHIELD program, which is a set of policies and strategies, including rapid saliva-based COVID-19 screening, for ensuring safety of students, faculty and staff to conduct in-person operations, at least partially. Specifically, we study how rapid bulk testing, contact tracing and preventative measures such as mask wearing, sanitization, and enforcement of social distancing can allow institutions to manage the epidemic spread. This work combines the power of analytical epidemic modeling, data analysis and agent-based simulations to derive policy insights. We develop an analytical model that takes into account the asymptomatic transmission of COVID-19, the effect of isolation via testing (both in bulk and through contact tracing) and the rate of contacts among people within and outside the institution. Next, we use data from the UIUC SHIELD program and 85 other universities to estimate parameters that describe the analytical model. Using the estimated parameters, we finally conduct agent-based simulations with various model parameters to evaluate testing and reopening strategies. The parameter estimates from UIUC and other universities show similar trends. For example, infection rates at various institutions grow rapidly in certain months and this growth correlates positively with infection rates in counties where the universities are located. Infection rates are also shown to be negatively correlated with testing rates at the institutions. Through agent-based simulations, we demonstrate that the key to designing an effective reopening strategy is a combination of rapid bulk testing and effective preventative measures such as mask wearing and social distancing. Multiple other factors help to reduce infection load, such as efficient contact tracing, reduced delay between testing and result revelation, tests with less false negatives and targeted testing of high-risk class among others. This paper contributes to the nascent literature on combating the COVID-19 pandemic and is especially relevant for educational institutions and similarly large organizations. We contribute by providing an analytical model that can be used to estimate key parameters from data, which in turn can be used to simulate the effect of different strategies for reopening. We quantify the relative effect of different strategies such as bulk testing, contact tracing, reduced infectivity and contact rates in the context of educational institutions. Specifically, we show that for the estimated average base infectivity of 0.025 ([Formula: see text]), a daily number of tests to population ratio T/N of 0.2, i.e., once a week testing for all individuals, is a good indicative threshold. However, this test to population ratio is sensitive to external infectivities, internal and external mobilities, delay in getting results after testing, and measures related to mask wearing and sanitization, which affect the base infection rate.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , Schools/standards , Universities/standards , Asymptomatic Diseases , Computer Simulation , Contact Tracing/methods , Humans , Saliva/virology
8.
Magn Reson Med ; 84(3): 1661-1671, 2020 09.
Article in English | MEDLINE | ID: mdl-32077521

ABSTRACT

PURPOSE: Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS: The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS: In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION: We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.


Subject(s)
Artifacts , Brain , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Motion , Neuroimaging , Prospective Studies
9.
IEEE Trans Biomed Eng ; 67(6): 1616-1627, 2020 06.
Article in English | MEDLINE | ID: mdl-31535979

ABSTRACT

OBJECTIVE: Cardiovascular interventional devices typically have long metallic braids or backbones to aid in steerability and pushability. However, electromagnetic coupling of metallic-based cardiovascular interventional devices with the radiofrequency (RF) fields present during Magnetic Resonance Imaging (MRI) can make a device unsafe for use in an MRI scanner. We aimed to develop MRI conditional actively-tracked cardiovascular interventional devices by sufficiently attenuating induced currents on the metallic braid/tube and internal-cabling using miniaturized resonant floating RF traps (MBaluns). METHOD: MBaluns were designed for placement at multiple locations along a conducting cardiovascular device to prevent the establishment of standing waves and to dissipate RF-induced energy. The MBaluns were constructed with loosely-wound solenoids to be sensitive to transverse magnetic fields created by both surface currents on the device's metallic backbone and common-mode currents on internal cables. Electromagnetic simulations were used to optimize MBalun parameters. Following optimization, two different MBalun designs were applied to MR-actively-tracked metallic guidewires and metallic-braided electrophysiology ablation catheters. Control-devices were constructed without MBaluns. MBalun performance was validated using network-analyzer quantification of current attenuation, electromagnetic Specific-Absorption-Rate (SAR) analysis, thermal tests during high SAR pulse sequences, and MRI-guided cardiovascular navigation in swine. RESULTS: Electromagnetic SAR simulations resulted in ≈20 dB attenuation at the tip of the wire using six successive MBaluns. Network-analyzer tests confirmed ∼17 dB/MBalun surface-current attenuation. Thermal tests indicated temperature decreases of 5.9 °C in the MBalun-equipped guidewire tip. Both devices allowed rapid vascular navigation resulting from good torquability and MR-Tracking visibility. CONCLUSION: MBaluns increased device diameter by 20%, relative to conventional devices, providing a spatially-efficient means to prevent heating during MRI. SIGNIFICANCE: MBaluns allow use of long metallic components, which improves mechanical performance in active MR-guided interventional devices.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Animals , Catheters , Electrophysiology , Equipment Design , Phantoms, Imaging , Swine
10.
IEEE Trans Biomed Eng ; 67(3): 876-882, 2020 03.
Article in English | MEDLINE | ID: mdl-31247538

ABSTRACT

Interventional magnetic resonance imaging (MRI) could allow for diagnosis and immediate treatment of ischemic stroke; however, such endovascular catheter-based procedures under MRI guidance are inherently difficult. One major challenge is tracking the tip of the catheter, as standard fabrication methods for building inductively coupled coil markers are rigid and bulky. Here, we report a new approach that uses aerosol jet deposition to three-dimensional (3-D) print an inductively coupled RF coil marker on a polymer catheter. Our approach enables lightweight conforming markers on polymer catheters and these low-profile markers allow the catheter to be more safely navigated in small caliber vessels. Prototype markers with an inductor with the geometry of a double helix are incorporated on catheters for in vitro studies, and we show that these markers exhibit good signal amplification. We report temperature measurements and, finally, demonstrate feasibility in a preliminary in vivo experiment. We provide material properties and electromagnetic simulation performance analysis. This paper presents fully aerosol jet-deposited and functional wireless resonant markers on polymer catheters for use in 3T clinical scanners.


Subject(s)
Catheters , Magnetic Resonance Imaging, Interventional/instrumentation , Magnetic Resonance Imaging, Interventional/methods , Wireless Technology/instrumentation , Animals , Equipment Design , Female , Swine , Temperature
11.
Magn Reson Med ; 81(2): 1434-1446, 2019 02.
Article in English | MEDLINE | ID: mdl-30260501

ABSTRACT

PURPOSE: An "RF-penetrable" PET insert that allows the MR body coil to be used for RF transmission was developed to make it easier for an existing MR center to achieve simultaneous PET/MRI. This study focuses on experiments and analyses to study PET/RF coil configurations for simultaneous PET/MR studies. METHODS: To investigate the appropriate RF coil design, a transmit/receive (TX/RX) birdcage coil and an RX-only phased-array coil (TX from body coil), both fitting inside the PET ring were built and characterized. For MR performance evaluation, B1 field uniformity and MR image SNR were calculated. PET photon attenuation due to each coil was studied by means of CT-based attenuation maps and reconstructed PET images. RESULTS: When using the RX-only phased-array coil (TX from body coil), compared with the TX/RX birdcage coil, the B1 field uniformity and the MR image (gradient echo and fast spin echo) SNR increased by 2.4±4.8%, 386.1±62.3%, and 205.0±56.5%, respectively. Although some components of the coil were distributed within the PET FOV, no significant PET photon attenuation was shown in the CT-based attenuation map and reconstructed PET images. CONCLUSION: RF coil configurations for an RF-penetrable PET insert for simultaneous PET/MRI were studied. The RX-only phased-array coil (TX from body coil) outperformed the TX/RX birdcage coil with improved MR performance as well as negligible PET photon attenuation.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Radio Waves , Equipment Design , Humans , Multimodal Imaging/instrumentation , Phantoms, Imaging , Photons , Reproducibility of Results , Signal-To-Noise Ratio
12.
IEEE Trans Med Imaging ; 37(9): 2060-2069, 2018 09.
Article in English | MEDLINE | ID: mdl-29993864

ABSTRACT

Despite the great promise of integrated positron emission tomography (PET)/magnetic resonance (MR) imaging to add molecular information to anatomical and functional MR, its potential impact in medicine is diminished by a very high cost, limiting its dissemination. An RF-penetrable PET ring that can be inserted into any existing MR system has been developed to address this issue. Employing optical signal transmission along with battery power enables the PET ring insert to electrically float with respect to the MR system. Then, inter-modular gaps of the PET ring allow the RF transmit field from the standard built-in body coil to penetrate into the PET fields-of-view (FOV) with some attenuation that can be compensated for. MR performance, including RF noise, magnetic susceptibility, RF penetrability through and $B_{1}$ uniformity within the PET insert, and MR image quality, were analyzed with and without the PET ring present. The simulated and experimentally measured RF field attenuation factors with the PET ring present were -2.7 and -3.2 dB, respectively. The magnetic susceptibility effect (0.063 ppm) and noise emitted from the PET ring in the MR receive channel were insignificant. $B_{1}$ homogeneity of a spherical agar phantom within the PET ring FOV dropped by 8.4% and MR image SNR was reduced by 3.5 and 4.3 dB with the PET present for gradient-recalled echo and fast-spin echo, respectively. This paper demonstrates, for the first time, an RF-penetrable PET insert comprising a full ring of operating detectors that achieves simultaneous PET/MR using the standard built-in body coil as the RF transmitter.


Subject(s)
Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Brain/diagnostic imaging , Equipment Design , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Multimodal Imaging/instrumentation , Multimodal Imaging/methods , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods
13.
Article in English | MEDLINE | ID: mdl-30613196

ABSTRACT

PURPOSE: To identify novel concepts for RF-shim loop architectures suitable for 7T made of two concentric conducting loops fulfilling RF and DC functions, respectively, and to determine their relative SNR performance. The goal is to minimize interference between the two systems while making efficient use of the space closest to the body. THEORY: We show by means of theoretical derivation of the frequency spectrum that the proposed two-loop structure exhibits an anti-resonant null and a resonant peak in the frequency domain. METHODS: The proposed structure is comprised of two concentric wire loops either arranged as nested loops or in the form of a coaxial cable, in which the two conductors carry the RF and shim signals, respectively. We use theory, simulation, and phantom measurements to obtain frequency spectra and SNR maps for the proposed structures. RESULTS: Retained SNR is found to be 75% in the coaxial loop and ranges from 57% to 67% in three different coaxial configurations. We have found both implementations to be a viable concept for the use in RF-shim devices if remaining SNR limitations can be overcome. CONCLUSIONS: We have investigated two new design modalities in 7T RF-shim coil design that separate the RF and shim conductors such that the previously proposed toroidal chokes are eliminated - thereby removing undesired additional loss, bulk, and design complexity.

14.
Magn Reson Med ; 79(3): 1745-1752, 2018 03.
Article in English | MEDLINE | ID: mdl-28585334

ABSTRACT

PURPOSE: Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. METHODS: Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. RESULTS: For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. CONCLUSIONS: We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Copper/chemistry , Equipment Design , Humans , Phantoms, Imaging , Positron-Emission Tomography/methods , Radio Waves
15.
Article in English | MEDLINE | ID: mdl-27913330

ABSTRACT

High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 ×8 -mm 2 32 ×32 -element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit. With a 40-V dc bias and a 60-V peak-to-peak ac excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this dc and ac voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. The following ex vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue.


Subject(s)
High-Intensity Focused Ultrasound Ablation/instrumentation , High-Intensity Focused Ultrasound Ablation/methods , Transducers , Animals , Cattle , Computer Simulation , Equipment Design , Liver/diagnostic imaging , Muscles/diagnostic imaging
16.
Circ Cardiovasc Imaging ; 9(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-27729363

ABSTRACT

BACKGROUND: Subjects undergoing cardiac arrest within a magnetic resonance imaging (MRI) scanner are currently removed from the bore and then from the MRI suite, before the delivery of cardiopulmonary resuscitation and defibrillation, potentially increasing the risk of mortality. This precludes many higher-risk (acute ischemic and acute stroke) patients from undergoing MRI and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the seconds of MRI after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. METHODS AND RESULTS: A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by the addition of novel radiofrequency filters between the generator and commercial disposable surface pads. The radiofrequency filters reduced emission into the MRI scanner and prevented cable/surface pad heating during imaging, while preserving all the defibrillator monitoring and delivery functions. Human volunteers were imaged using high specific absorption rate sequences to validate MRI image quality and lack of heating. Swine were electrically fibrillated (n=4) and thereafter defibrillated both outside and inside the MRI bore. MRI image quality was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface pads did not create artifacts deeper than 6 mm below the skin surface. Radiofrequency heating was within US Food and Drug Administration guidelines. Defibrillation was completely successful inside and outside the MRI bore. CONCLUSIONS: A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading the image quality or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures.


Subject(s)
Defibrillators , Electric Countershock/instrumentation , Heart Arrest/therapy , Magnetic Resonance Imaging/adverse effects , Resuscitation/instrumentation , Time-to-Treatment , Animals , Disease Models, Animal , Equipment Design , Heart Arrest/diagnostic imaging , Heart Arrest/etiology , Heart Arrest/physiopathology , Humans , Magnetic Resonance Imaging/instrumentation , Materials Testing , Sus scrofa
17.
Magn Reson Med ; 75(5): 2204-16, 2016 May.
Article in English | MEDLINE | ID: mdl-26101951

ABSTRACT

PURPOSE: To restore 12-lead electrocardiographic (ECG) signal fidelity inside MRI by removing magnetic field gradient-induced voltages during high gradient duty cycle sequences. THEORY AND METHODS: A theoretical equation was derived to provide first- and second-order electrical fields induced at individual ECG electrodes as a function of gradient fields. Experiments were performed at 3T on healthy volunteers using a customized acquisition system that captured the full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived via linear regression of data from accelerated sequences and were used to compute induced voltages in real-time during full resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. RESULTS: Measured induced voltages were 0.7 V peak-to-peak during balanced steady state free precession (bSSFP) with the heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo, and multislice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes further from the magnet isocenter. Equation coefficients are evaluated with high repeatability (ρ = 0.996) and are dependent on subject, sequence, and slice orientation. CONCLUSION: Close agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence periods in which large induced voltages occur may allow hardware removal of these signals.


Subject(s)
Electrocardiography , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Algorithms , Artifacts , Cardiac-Gated Imaging Techniques , Electrodes , Healthy Volunteers , Humans , Linear Models , Male , Middle Aged , Models, Statistical , Reproducibility of Results
18.
Magn Reson Med ; 71(3): 1197-209, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23580479

ABSTRACT

PURPOSE: Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. METHODS: An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. RESULTS: Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. CONCLUSION: An MRI-compatible VDT system is feasible.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Plethysmography, Impedance/instrumentation , Prostheses and Implants , Wireless Technology/instrumentation , Animals , Equipment Design , Equipment Failure Analysis , Pilot Projects , Swine
19.
Magn Reson Med ; 70(3): 639-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23813444

ABSTRACT

PURPOSE: A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. METHODS: Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. RESULTS: Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. CONCLUSION: Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging/instrumentation , Equipment Design , Head , Humans , Magnetic Resonance Imaging/methods , Motion
20.
Rev Sci Instrum ; 81(8): 083504, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20815605

ABSTRACT

A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

SELECTION OF CITATIONS
SEARCH DETAIL
...