Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 970425, 2022.
Article in English | MEDLINE | ID: mdl-36110933

ABSTRACT

Purpose: To evaluate the accuracy and efficiency of Artificial-Intelligence (AI) segmentation in Total Marrow Irradiation (TMI) including contours throughout the head and neck (H&N), thorax, abdomen, and pelvis. Methods: An AI segmentation software was clinically introduced for total body contouring in TMI including 27 organs at risk (OARs) and 4 planning target volumes (PTVs). This work compares the clinically utilized contours to the AI-TMI contours for 21 patients. Structure and image dicom data was used to generate comparisons including volumetric, spatial, and dosimetric variations between the AI- and human-edited contour sets. Conventional volume and surface measures including the Sørensen-Dice coefficient (Dice) and the 95th% Hausdorff Distance (HD95) were used, and novel efficiency metrics were introduced. The clinical efficiency gains were estimated by the percentage of the AI-contour-surface within 1mm of the clinical contour surface. An unedited AI-contour has an efficiency gain=100%, an AI-contour with 70% of its surface<1mm from a clinical contour has an efficiency gain of 70%. The dosimetric deviations were estimated from the clinical dose distribution to compute the dose volume histogram (DVH) for all structures. Results: A total of 467 contours were compared in the 21 patients. In PTVs, contour surfaces deviated by >1mm in 38.6% ± 23.1% of structures, an average efficiency gain of 61.4%. Deviations >5mm were detected in 12.0% ± 21.3% of the PTV contours. In OARs, deviations >1mm were detected in 24.4% ± 27.1% of the structure surfaces and >5mm in 7.2% ± 18.0%; an average clinical efficiency gain of 75.6%. In H&N OARs, efficiency gains ranged from 42% in optic chiasm to 100% in eyes (unedited in all cases). In thorax, average efficiency gains were >80% in spinal cord, heart, and both lungs. Efficiency gains ranged from 60-70% in spleen, stomach, rectum, and bowel and 75-84% in liver, kidney, and bladder. DVH differences exceeded 0.05 in 109/467 curves at any dose level. The most common 5%-DVH variations were in esophagus (86%), rectum (48%), and PTVs (22%). Conclusions: AI auto-segmentation software offers a powerful solution for enhanced efficiency in TMI treatment planning. Whole body segmentation including PTVs and normal organs was successful based on spatial and dosimetric comparison.

2.
Adv Radiat Oncol ; 5(2): 279-288, 2020.
Article in English | MEDLINE | ID: mdl-32280828

ABSTRACT

PURPOSE: To introduce multiobjective, multidelivery optimization (MODO), which generates alternative patient-specific plans emphasizing dosimetric trade-offs and conformance to quasi-constrained (QC) conditions for multiple delivery techniques. METHODS AND MATERIALS: For M delivery techniques and N organs at risk (OARs), MODO generates M (N + 1) alternative treatment plans per patient. For 30 locally advanced lung cancer cases, the algorithm was investigated based on dosimetric trade-offs to 4 OARs: each lung, heart, and esophagus (N = 4) and 4 delivery techniques (4-field coplanar intensity modulated radiation therapy [IMRT], 9-field coplanar IMRT, 27-field noncoplanar IMRT, and noncoplanar arc IMRT) and conformance to QC conditions, including dose to 95% (D95) of the planning target volume (PTV), maximum dose (Dmax) to PTV (PTV-Dmax), and spinal cord Dmax. The MODO plan set was evaluated for conformance to QC conditions while simultaneously revealing dosimetric trade-offs. Statistically significant dosimetric trade-offs were defined such that the coefficient of determination was >0.8 with dosimetric indices that varied by at least 5 Gy. RESULTS: Plans varied mean dose by >5 Gy to ipsilateral lung for 24 of 30 patients, contralateral lung for 29 of 30 patients, esophagus for 29 of 30 patients, and heart for 19 of 30 patients. In the 600 plans, average PTV-D95 = 67.6 ± 2.1 Gy, PTV-Dmax = 79.8 ± 5.2 Gy, and spinal cord Dmax among all plans was 51.4 Gy. Statistically significant dosimetric trade-offs reducing OAR mean dose by >5 Gy were evident in 19 of 30 patients, including multiple OAR trade-offs of at least 5 Gy in 7 of 30 cases. The most common statistically significant trade-off was increasing PTV-Dmax to reduce dose to OARs (15 of 30). The average 4-field plan reduced total lung V20 by 10.4% ± 8.3% compared with 9-field plans, 7.7% ± 7.9% compared with 27-field noncoplanar plans, and 11.7% ± 10.3% compared with 2-arc noncoplanar plans, with corresponding increases in PTV-Dmax of 5.3 ± 5.9 Gy, 4.6 ± 5.6 Gy, and 9.3 ± 7.3 Gy. CONCLUSIONS: The proposed optimization method produces clinically relevant treatment plans that meet QC conditions and demonstrate variations in OAR doses.

SELECTION OF CITATIONS
SEARCH DETAIL
...