Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Appl Oral Sci ; 24(1): 52-60, 2016.
Article in English | MEDLINE | ID: mdl-27008257

ABSTRACT

OBJECTIVE: The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. MATERIAL AND METHODS: Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. RESULTS: Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. CONCLUSION: Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.


Subject(s)
Acidulated Phosphate Fluoride/chemistry , Zirconium/chemistry , Ceramics/chemistry , Corrosion , Dental Implants , Dielectric Spectroscopy/methods , Immersion , Materials Testing , Microscopy, Electron, Scanning , Surface Properties/drug effects , Time Factors , X-Ray Diffraction/methods
2.
Inorg Chem ; 55(4): 1946-51, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26841259

ABSTRACT

Single crystals of Pr2Fe(4-x)Co(x)Sb5 (1 < x < 2.5) were grown from a Bi flux and characterized by X-ray diffraction. The compounds adopt the La2Fe4Sb5 structure type (I4/mmm). The structure of Pr2Fe(4-x)Co(x)Sb5 (1 < x < 2.5) contains a network of transition metals forming isosceles triangles. The x ∼ 1 analogue is metallic and exhibits a magnetic transition at T1 ≈ 25 K. The magnetic moment obtained from the Curie-Weiss fit is 11.49(4) µ(B), which is larger than the spin-only Pr(3+) moment. The x ∼ 2 analogue orders magnetically at T1 ≈ 80 and T2 ≈ 45 K. This is the first case of the substitution of Co into the La2Fe4Sb5 structure type, evidenced by the increased concentration of dopant with decreased lattice parameters coupled with a change in the transition temperature with a change in the cobalt concentration. The added complexity in the magnetic behavior of the x ∼ 1 and 2 analogues indicates that the increased concentration of Co invokes an additional magnetic contribution of the transition metal in the sublattice. Furthermore, X-ray photoelectron spectroscopy measurements support the change in the oxidation states of transition metals with increasing cobalt concentration.

3.
J. appl. oral sci ; 24(1): 52-60, Jan.-Feb. 2016. graf
Article in English | LILACS, BBO - Dentistry | ID: lil-777363

ABSTRACT

ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.


Subject(s)
Zirconium/chemistry , Acidulated Phosphate Fluoride/chemistry , Surface Properties/drug effects , Time Factors , X-Ray Diffraction/methods , Materials Testing , Microscopy, Electron, Scanning , Dental Implants , Ceramics/chemistry , Corrosion , Dielectric Spectroscopy/methods , Immersion
4.
J Oral Implantol ; 42(1): 34-40, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25785647

ABSTRACT

Dissolution of titanium wear particles in the oral environment, and their accumulation in the surrounding tissues have been associated with failure of dental implants (DI). The goal of this study is to investigate the effect of mechanical forces involved in surgical insertion of DI on surface wear and metal particle generation. It was hypothesized that mechanical factors associated with implant placement can lead to the generation of titanium particles in the oral environment. The testing methodology for surface evaluation employed simulated surgical insertion, followed by removal of DI in different densities of simulated bone material. Torsional forces were monitored for the insertion and removal of DI. The surface of the simulated bone materials was inspected with optical microscopy to detect traces of metallic particles that may have been generated during the procedure. Further characterization of the composition of powders collected from osteotomy cavities was conducted with powder X-ray diffraction. The results showed that the different densities of simulated bone material affected the torsional forces associated with implant insertion. However, the mechanical factors involved in the implant insertion/removal procedure did not generate wear particles, as confirmed by powder X-ray experiments.


Subject(s)
Dental Implants , Titanium , Microscopy, Electron, Scanning , Surface Properties
5.
Inorg Chem ; 54(3): 963-8, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25393497

ABSTRACT

Single crystals of CeCo(2-x)M(x)Al(8) (M = Mn, Fe, Ni; 0 ≤ x < 1) were grown and characterized by X-ray diffraction and magnetic susceptibility. The unit cell volumes of Mn-doped compounds increase and those of Ni-doped compounds decrease with increasing dopant concentration. All samples display a magnetic ordering near 6 K with magnetic moments of the analogues ranging from 2.61 to 2.81 µ(B)/mol Ce and slightly higher than Ce(3+) only magnetic moment. The unit cell volumes of Fe-doped compounds also increase with increasing Fe concentration. However, the cell volume of CeCo(2-x)Fe(x)Al(8) decreases for x = 1.00 and is not Curie-Weiss possibly because of valence fluctuation.

6.
Nat Commun ; 5: 4203, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24969742

ABSTRACT

Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but in most systems they are connected only indirectly--via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin-orbit coupling directly, such that these numbers become entwined together and the Mott physics attains a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin-anisotropic magnetic interactions, coupling the spin to a given spatial direction of exchange and leading to strongly frustrated magnetism. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb and exhibits striking evidence for highly spin-anisotropic exchange. The basic structural units of this material suggest that a new family of three-dimensional structures could exist, the 'harmonic honeycomb' iridates, of which the present compound is the first example.

SELECTION OF CITATIONS
SEARCH DETAIL
...