Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Cogn Psychol ; 13(3): 241-247, 2017.
Article in English | MEDLINE | ID: mdl-29062437

ABSTRACT

Growing evidence suggests an alerting effect of monochromatic blue light on brain activity. Little is known about the moderation of those effects by timing and duration of exposure. The present electroencephalography (EEG ) study examined such moderations on delta, theta, alpha1, alpha2, and beta EEG bands. A counterbalanced repeated-measures design was applied. The 16-hr daytime period was divided into three sessions: 07:00-12:20, 12:20-17:40, and 17:40-23:00 (timing of exposure). Two light conditions comparable in luminance but differing in wavelength were applied, namely polychromatic white light and monochromatic blue light (460 nm). There were two durations of exposure-the shorter one lasting 30 min and the longer one lasting 4 hrs. Thirty male students participated in the study. Four factors analyses of variance (ANOV As, for light conditions, timing of exposure, duration of exposure, and brain area) were performed on each EEG band. Results indicated an alerting effect of short exposure to monochromatic blue light at midday and in the evening, which was demonstrated by a decrease in lower frequency bands (alpha1, delta, and theta, respectively). Long exposure to blue light may have a reverse effect, especially in the morning and at midday, when increases in lower frequency bands (theta in the morning and theta and alpha1 at midday) were observed. It can be concluded that the daytime effect of monochromatic blue light on EEG activity depends on timing and duration of exposure.

2.
Int J Occup Med Environ Health ; 30(1): 121-131, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28220912

ABSTRACT

OBJECTIVES: Existing research has documented that shiftwork consequences may depend on the shift system parameters. Fast rotating systems (1-3 shifts of the same kind in a row) and day work have been found to be less disruptive biologically and socially than slower rotating systems and afternoon and night work. The aim of this study was to compare day workers and shift workers of different systems in terms of rotation speed and shifts worked with regard to work-family and family-work positive and negative spillover, marital communication style, job satisfaction and health. MATERIAL AND METHODS: Employees (N = 168) of the maintenance workshops of transportation service working different shift systems (day shift, weekly rotating 2 and 3­shift system, and fast rotating 3-shift system) participated in the study. They completed the Work- Family Spillover Questionnaire, Marital Communication Questionnaire, Minnesota Job Satisfaction Questionnaire and the Physical Health Questionnaire (a part of the Standard Shiftwork Index). RESULTS: The workers of quicker rotating 3-shift systems reported significantly higher scores of family-to-work facilitation (F(3, 165) = 4.175, p = 0.007) and a higher level of constructive style of marital communication (Engagement F(3, 165) = 2.761, p = 0.044) than the workers of slower rotating 2-shift systems. There were no differences between the groups of workers with regard to health and job satisfaction. CONCLUSIONS: A higher level of work-family facilitation and a more constructive style of marital communication were found among the workers of faster rotating 3-shift system when compared to the workers of a slower rotating 2-shift system (afternoon, night). This may indicate that the fast rotating shift system in contrary to the slower rotating one is more friendly for the work and family domains and for the relationship between them. Int J Occup Med Environ Health 2017;30(1):121-131.


Subject(s)
Communication , Family Relations/psychology , Job Satisfaction , Work Schedule Tolerance/psychology , Adult , Humans , Maintenance , Male , Marriage/psychology , Middle Aged , Occupational Health , Poland , Surveys and Questionnaires
3.
Chirality ; 22(6): 557-64, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19885820

ABSTRACT

Studies on the interactions between L-O- phosphoserine, as one of the simplest fragments of membrane components, and the Cinchona alkaloid cinchonine, in the crystalline state were performed. Cinchoninium L-O-phosposerine salt dihydrate (PhSerCin) crystallizes in a monoclinic crystal system, space group P2(1), with unit cell parameters: a = 8.45400(10) A, b = 7.17100(10) A, c = 20.7760(4) A, alpha = 90 degrees , beta = 98.7830(10) degrees , gamma = 90 degrees , Z = 2. The asymmetric unit consists of the cinchoninium cation linked by hydrogen bonds to a phosphoserine anion and two water molecules. Intermolecular hydrogen bonds connecting phosphoserine anions via water molecules form chains extended along the b axis. Two such chains symmetrically related by twofold screw axis create a "channel." On both sides of this channel cinchonine cations are attached by hydrogen bonds in which the atoms N1, O12, and water molecules participate. This arrangement mimics the system of bilayer biological membrane.


Subject(s)
Cinchona Alkaloids/chemistry , Phosphoserine/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...