Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(7): e0288290, 2023.
Article in English | MEDLINE | ID: mdl-37494371

ABSTRACT

Mouse models are critical tools in tuberculosis (TB) research. Recent studies have demonstrated that the wild mouse gut microbiota promotes host fitness and improves disease resistance. Here we examine whether the wild mouse gut microbiota alters the immunopathology of TB in BALB/c mice. Conventional BALB/c mice (LabC) and mice born to germ-free BALB/c mothers reconstituted with the wild mouse gut microbiota (WildR) were used in our studies. WildR mice controlled initial TB infection better than LabC mice. The microbial gut communities of LabC mice and WildR mice had similar richness but significantly different composition prior to infection. TB reduced the gut community richness in both cohorts while differences in community composition remained indicating a general TB-induced dysbiosis. The wild mouse gut microbiota did not alter the typical lung histopathology of TB in the BALB/c model that includes unstructured immune cell infiltrates with infected foamy macrophages invading alveolar spaces. Animals of both cohorts mounted robust T cell responses in lungs and spleen with lower absolute counts of CD4 and CD8 T cells in lungs of WildR mice during acute infection, corresponding with observed differences in pathogen load. In summary, LabC mice and WildR mice showed largely overlapping TB immunopathology and pathogen kinetics, with WildR mice controlling early acute infection better than LabC mice.


Subject(s)
Gastrointestinal Microbiome , Latent Tuberculosis , Tuberculosis , Animals , Mice , Mice, Inbred BALB C , Latent Tuberculosis/pathology , Lung/pathology , Dysbiosis/pathology
2.
Am J Physiol Heart Circ Physiol ; 315(1): H18-H32, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29498532

ABSTRACT

Increased vascular stiffness correlates with a higher risk of cardiovascular complications in aging adults. Elastin (ELN) insufficiency, as observed in patients with Williams-Beuren syndrome or with familial supravalvular aortic stenosis, also increases vascular stiffness and leads to arterial narrowing. We used Eln+/- mice to test the hypothesis that pathologically increased vascular stiffness with concomitant arterial narrowing leads to decreased blood flow to end organs such as the brain. We also hypothesized that drugs that remodel arteries and increase lumen diameter would improve flow. To test these hypotheses, we compared carotid blood flow using ultrasound and cerebral blood flow using MRI-based arterial spin labeling in wild-type (WT) and Eln+/- mice. We then studied how minoxidil, an ATP-sensitive K+ channel opener and vasodilator, affects vessel mechanics, blood flow, and gene expression. Both carotid and cerebral blood flows were lower in Eln+/- mice than in WT mice. Treatment of Eln+/- mice with minoxidil lowered blood pressure and reduced functional arterial stiffness to WT levels. Minoxidil also improved arterial diameter and restored carotid and cerebral blood flows in Eln+/- mice. The beneficial effects persisted for weeks after drug removal. RNA-Seq analysis revealed differential expression of 127 extracellular matrix-related genes among the treatment groups. These results indicate that ELN insufficiency impairs end-organ perfusion, which may contribute to the increased cardiovascular risk. Minoxidil, despite lowering blood pressure, improves end-organ perfusion. Changes in matrix gene expression and persistence of treatment effects after drug withdrawal suggest arterial remodeling. Such remodeling may benefit patients with genetic or age-dependent ELN insufficiency. NEW & NOTEWORTHY Our work with a model of chronic vascular stiffness, the elastin ( Eln)+/- mouse, shows reduced brain perfusion as measured by carotid ultrasound and MRI arterial spin labeling. Vessel caliber, functional stiffness, and blood flow improved with minoxidil. The ATP-sensitive K+ channel opener increased Eln gene expression and altered 126 other matrix-associated genes.


Subject(s)
Cerebrovascular Circulation/drug effects , Extracellular Matrix/metabolism , Minoxidil/pharmacology , Vascular Stiffness/drug effects , Vasodilator Agents/pharmacology , Animals , Cerebral Arteries/drug effects , Cerebral Arteries/metabolism , Cerebral Arteries/physiology , Elastin/genetics , Elastin/metabolism , Extracellular Matrix/drug effects , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...