Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Genet ; 55(10): 1677-1685, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697102

ABSTRACT

Mosaic chromosomal alterations (mCAs) are common in cancers and can arise decades before diagnosis. A quantitative understanding of the rate at which these events occur, and their functional consequences, could improve cancer risk prediction and our understanding of somatic evolution. Using mCA clone size estimates from the blood of approximately 500,000 UK Biobank participants, we estimate mutation rates and fitness consequences of acquired gain, loss and copy-neutral loss of heterozygosity events. Most mCAs have moderate to high fitness effects but occur at a low rate, being more than tenfold less common than equivalently fit single-nucleotide variants. Notable exceptions are mosaic loss of X and Y, which we estimate have roughly 1,000-fold higher mutation rates than autosomal mCAs. Although the way in which most mCAs increase in prevalence with age is consistent with constant growth rates, some mCAs exhibit different behavior, suggesting that their fitness may depend on inherited variants, extrinsic factors or distributions of fitness effects.


Subject(s)
Mutation Rate , Neoplasms , Humans , Male , Chromosomes, Human, Y , Mosaicism , Chromosomes , Neoplasms/genetics , Mutation
3.
Cancer Discov ; 12(1): 220-235, 2022 01.
Article in English | MEDLINE | ID: mdl-34429321

ABSTRACT

Clonal hematopoiesis is a prevalent age-related condition associated with a greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations are unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, and found that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and acute myeloid leukemia development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease. SIGNIFICANCE: DNMT3A has emerged as the most important epigenetic regulator and tumor suppressor in the hematopoietic system. Our study represents a systematic and high-throughput method to characterize the molecular impact of DNMT3A missense mutations and the discovery of a regulated destruction mechanism of DNMT3A offering new prognostic and future therapeutic avenues.See related commentary by Ma and Will, p. 23.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
DNA Methyltransferase 3A/genetics , Leukemia, Myeloid, Acute/genetics , Ubiquitin-Protein Ligases/genetics , Animals , HEK293 Cells , Humans , Leukocytes, Mononuclear , Mice , Mutation, Missense
4.
Nat Genet ; 53(11): 1597-1605, 2021 11.
Article in English | MEDLINE | ID: mdl-34737428

ABSTRACT

Genetic alterations under positive selection in healthy tissues have implications for cancer risk. However, total levels of positive selection across the genome remain unknown. Passenger mutations are influenced by all driver mutations, regardless of type or location in the genome. Therefore, the total number of passengers can be used to estimate the total number of drivers-including unidentified drivers outside of cancer genes that are traditionally missed. Here we analyze the variant allele frequency spectrum of synonymous mutations from healthy blood and esophagus to quantify levels of missing positive selection. In blood, we find that only 30% of passengers can be explained by single-nucleotide variants in driver genes, suggesting high levels of positive selection for mutations elsewhere in the genome. In contrast, more than half of all passengers in the esophagus can be explained by just the two driver genes NOTCH1 and TP53, suggesting little positive selection elsewhere.


Subject(s)
Genome, Human , Selection, Genetic , Silent Mutation , Adult , Age Factors , Aged , Blood Physiological Phenomena/genetics , Esophagus/physiology , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Humans , Middle Aged , Oncogenes , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics
5.
Science ; 367(6485): 1449-1454, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32217721

ABSTRACT

Somatic mutations acquired in healthy tissues as we age are major determinants of cancer risk. Whether variants confer a fitness advantage or rise to detectable frequencies by chance remains largely unknown. Blood sequencing data from ~50,000 individuals reveal how mutation, genetic drift, and fitness shape the genetic diversity of healthy blood (clonal hematopoiesis). We show that positive selection, not drift, is the major force shaping clonal hematopoiesis, provide bounds on the number of hematopoietic stem cells, and quantify the fitness advantages of key pathogenic variants, at single-nucleotide resolution, as well as the distribution of fitness effects (fitness landscape) within commonly mutated driver genes. These data are consistent with clonal hematopoiesis being driven by a continuing risk of mutations and clonal expansions that become increasingly detectable with age.


Subject(s)
Aging , Biological Evolution , Genetic Drift , Genetic Fitness , Hematopoiesis/genetics , Selection, Genetic , Gene Frequency , Genetics, Population , Hematopoietic Stem Cells/cytology , Humans , Models, Genetic , Mutation , Mutation Rate
6.
Article in English | MEDLINE | ID: mdl-25152533

ABSTRACT

Red drum, Sciaenops ocellatus, is an estuarine-dependent fish species commonly found in the Gulf of Mexico and along the coast of the southeastern United States. This economically important species has demonstrated freshwater tolerance; however, the physiological mechanisms and costs related to freshwater exposure remain poorly understood. The current study therefore investigated the physiological response of red drum using an acute freshwater transfer protocol. Plasma osmolality, Cl⁻, Mg²âº and Ca²âº were all significantly reduced by 24h post-transfer; Cl⁻ and Mg²âº recovered to control levels by 7days post-transfer. No effect of transfer was observed on muscle water content; however, muscle Cl⁻ was significantly reduced. Interestingly, plasma and muscle Na⁺ content was unaffected by freshwater transfer. Intestinal fluid was absent by 24h post-transfer indicating cessation of drinking. Branchial gene expression analysis showed that both CFTR and NKCC1 exhibited significant down-regulation at 8 and 24h post-transfer, respectively, although transfer had no impact on NHE2, NHE3 or Na⁺, K⁺ ATPase (NKA) activity. These general findings are supported by immunohistochemical analysis, which revealed no apparent NKCC containing cells in the gills at 7days post transfer while NKA cells localization was unaffected. The results of the current study suggest that red drum can effectively regulate Na⁺ balance upon freshwater exposure using already present Na⁺ uptake pathways while also down-regulating ion excretion mechanisms.


Subject(s)
Bass/physiology , Branchial Region/physiology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Gene Expression Regulation, Developmental , Osmoregulation , Solute Carrier Family 12, Member 2/metabolism , Stress, Physiological , Animals , Aquaculture , Bass/blood , Bass/growth & development , Branchial Region/cytology , Branchial Region/growth & development , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Down-Regulation , Fish Proteins/genetics , Fish Proteins/metabolism , Fresh Water , Kinetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Salinity , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 2/genetics , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...