Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2244, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783192

ABSTRACT

Silicon Microelectromechanical Systems (MEMS) resonators have broad commercial applications for timing and inertial sensing. However, the performance of MEMS resonators is constrained by dissipation mechanisms, some of which are easily detected and well-understood, but some of which have never been directly observed. In this work, we present measurements of the quality factor, Q, for a family of single crystal silicon Lamé-mode resonators as a function of temperature, from 80-300 K. By comparing these Q measurements on resonators with variations in design, dimensions, and anchors, we have been able to show that gas damping, thermoelastic dissipation, and anchor damping are not significant dissipation mechanisms for these resonators. The measured f · Q product for these devices approaches 2 × 1013, which is consistent with the expected range for Akhiezer damping, and the dependence of Q on temperature and geometry is consistent with expectations for Akhiezer damping. These results thus provide the first clear, direct detection of Akhiezer dissipation in a MEMS resonator, which is widely considered to be the ultimate limit to Q in silicon MEMS devices.

2.
Rev Sci Instrum ; 88(8): 083703, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863713

ABSTRACT

Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.

3.
Phys Rev Lett ; 114(6): 066801, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723235

ABSTRACT

We use superconducting quantum interference device microscopy to characterize the current-phase relation (CPR) of Josephson junctions from the three-dimensional topological insulator HgTe (3D HgTe). We find clear skewness in the CPRs of HgTe junctions ranging in length from 200 to 600 nm. The skewness indicates that the Josephson current is predominantly carried by Andreev bound states with high transmittance, and the fact that the skewness persists in junctions that are longer than the mean free path suggests that the effect may be related to the helical nature of the Andreev bound states in the surface of HgTe. These experimental results suggest that the topological properties of the normal state can be inherited by the induced superconducting state, and that 3D HgTe is a promising material for realizing the many exciting proposals that require a topological superconductor.

4.
Nature ; 503(7476): 377-80, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24172902

ABSTRACT

Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

SELECTION OF CITATIONS
SEARCH DETAIL
...