Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 384(6698): 890-894, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781391

ABSTRACT

Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H i) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8. From a sample of 12 galaxies, we identified three that show strong damped Lyman-α absorption due to H i in their local surroundings. The galaxies are located at spectroscopic redshifts of 8.8, 10.2, and 11.4, corresponding to 400 to 600 million years after the Big Bang. They have H i column densities ≳1022 cm-2, which is an order of magnitude higher than expected for a fully neutral intergalactic medium, and constitute a gas-rich population of young star-forming galaxies.

2.
Nature ; 614(7948): 436-439, 2023 02.
Article in English | MEDLINE | ID: mdl-36792736

ABSTRACT

The mergers of neutron stars expel a heavy-element enriched fireball that can be observed as a kilonova1-4. The kilonova's geometry is a key diagnostic of the merger and is dictated by the properties of ultra-dense matter and the energetics of the collapse to a black hole. Current hydrodynamical merger models typically show aspherical ejecta5-7. Previously, Sr+ was identified in the spectrum8 of the only well-studied kilonova9-11 AT2017gfo12, associated with the gravitational wave event GW170817. Here we combine the strong Sr+ P Cygni absorption-emission spectral feature and the blackbody nature of kilonova spectrum to determine that the kilonova is highly spherical at early epochs. Line shape analysis combined with the known inclination angle of the source13 also show the same sphericity independently. We conclude that energy injection by radioactive decay is insufficient to make the ejecta spherical. A magnetar wind or jet from the black-hole disk could inject enough energy to induce a more spherical distribution in the overall ejecta; however, an additional process seems necessary to make the element distribution uniform.

3.
Nature ; 574(7779): 497-500, 2019 10.
Article in English | MEDLINE | ID: mdl-31645733

ABSTRACT

Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.

4.
Nature ; 519(7543): 327-30, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25731171

ABSTRACT

Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

6.
Nature ; 515(7528): 528-30, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25428499

ABSTRACT

The active galaxy NGC 4151 has a crucial role as one of only two active galactic nuclei for which black hole mass measurements based on emission line reverberation mapping can be calibrated against other dynamical techniques. Unfortunately, effective calibration requires accurate knowledge of the distance to NGC 4151, which is not at present available. Recently reported distances range from 4 to 29 megaparsecs. Strong peculiar motions make a redshift-based distance very uncertain, and the geometry of the galaxy and its nucleus prohibit accurate measurements using other techniques. Here we report a dust-parallax distance to NGC 4151 of 19.0(+2.4)(-2.6) megaparsecs. The measurement is based on an adaptation of a geometric method that uses the emission line regions of active galaxies. Because these regions are too small to be imaged with present technology, we use instead the ratio of the physical and angular sizes of the more extended hot-dust emission as determined from time delays and infrared interferometry. This distance leads to an approximately 1.4-fold increase in the dynamical black hole mass, implying a corresponding correction to emission line reverberation masses of black holes if they are calibrated against the two objects with additional dynamical masses.

7.
Nature ; 511(7509): 326-9, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25030169

ABSTRACT

The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

8.
Nature ; 444(7122): 1047-9, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17183316

ABSTRACT

It is now accepted that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. The standard 'collapsar' model predicts that a broad-lined and luminous type Ic core-collapse supernova accompanies every long-duration GRB. This association has been confirmed in observations of several nearby GRBs. Here we report that GRB 060505 (ref. 10) and GRB 060614 (ref. 11) were not accompanied by supernova emission down to limits hundreds of times fainter than the archetypal supernova SN 1998bw that accompanied GRB 980425, and fainter than any type Ic supernova ever observed. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in actively star-forming regions. The absence of a supernova to such deep limits is qualitatively different from all previous nearby long-duration GRBs and suggests a new phenomenological type of massive stellar death.

9.
Nature ; 437(7060): 859-61, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16208365

ABSTRACT

It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.

11.
Nature ; 423(6942): 847-50, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12815425

ABSTRACT

Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

SELECTION OF CITATIONS
SEARCH DETAIL
...