Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083436

ABSTRACT

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.


Subject(s)
Dopamine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/metabolism , Animals , Glutamic Acid/metabolism , Male , Mice , Mice, Knockout , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics , Receptors, Dopamine/metabolism , Schizophrenia , Synaptic Transmission/drug effects
2.
Pain Rep ; 6(4): e956, 2021.
Article in English | MEDLINE | ID: mdl-35128295

ABSTRACT

INTRODUCTION: Negative affect, including anxiety and depression, is prevalent in chronic pain states such as osteoarthritis (OA) and associated with greater use of opioid analgesics, potentially contributing to present and future opioid crises. OBJECTIVES: We tested the hypothesis that the interaction between anxiety, chronic pain, and opioid use results from altered endogenous opioid function. METHODS: A genetic model of negative affect, the Wistar-Kyoto (WKY) rat, was combined with intra-articular injection of monosodium iodoacetate (MIA; 1 mg) to mimic clinical presentation. Effects of systemic morphine (0.5-3.5 mg·kg-1) on pain behaviour and spinal nociceptive neuronal activity were compared in WKY and normo-anxiety Wistar rats 3 weeks after MIA injection. Endogenous opioid function was probed by the blockade of opioid receptors (0.1-1 mg·kg-1 systemic naloxone), quantification of plasma ß-endorphin, and expression and phosphorylation of spinal mu-opioid receptor (MOR). RESULTS: Monosodium iodoacetate-treated WKY rats had enhanced OA-like pain, blunted morphine-induced analgesia, and greater mechanical hypersensitivity following systemic naloxone, compared with Wistar rats, and elevated plasma ß-endorphin levels compared with saline-treated WKY controls. Increased MOR phosphorylation at the master site (serine residue 375) in the spinal cord dorsal horn of WKY rats with OA-like pain (P = 0.0312) indicated greater MOR desensitization. CONCLUSIONS: Reduced clinical analgesic efficacy of morphine was recapitulated in a model of high anxiety and OA-like pain, in which endogenous opioid tone was altered, and MOR function attenuated, in the absence of previous exogenous opioid ligand exposure. These findings shed new light on the mechanisms underlying the increased opioid analgesic use in high anxiety patients with chronic pain.

3.
Mol Neurobiol ; 57(5): 2144-2166, 2020 May.
Article in English | MEDLINE | ID: mdl-31960362

ABSTRACT

Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40-200 mg/kg) and ORG24598 (0.63-5 mg/kg), the agonists, glycine (40-800 mg/kg), and D-serine (10-160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5-40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5-10 µg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.


Subject(s)
Cognition Disorders/drug therapy , Cognition/drug effects , Glycine Agents/pharmacology , Glycine/metabolism , Memory, Short-Term/drug effects , Neurotransmitter Uptake Inhibitors/pharmacology , Nootropic Agents/pharmacology , Amino Acids/analysis , Animals , Autism Spectrum Disorder/drug therapy , Cycloserine/pharmacology , Dose-Response Relationship, Drug , Freezing Reaction, Cataleptic/drug effects , Glycine/agonists , Glycine/analogs & derivatives , Glycine/pharmacology , Male , Motor Activity/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Receptors, Glycine/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Recognition, Psychology/drug effects , Sarcosine/pharmacology , Schizophrenia/drug therapy , Scopolamine/antagonists & inhibitors , Serine/pharmacology , Social Behavior
4.
Pain ; 160(3): 658-669, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30779717

ABSTRACT

Anxiety and depression are associated with increased pain responses in chronic pain states. The extent to which anxiety drives chronic pain, or vice versa, remains an important question that has implications for analgesic treatment strategies. Here, the effect of existing anxiety on future osteoarthritis (OA) pain was investigated, and potential mechanisms were studied in an animal model. Pressure pain detection thresholds, anxiety, and depression were assessed in people with (n = 130) or without (n = 100) painful knee OA. Separately, knee pain and anxiety scores were also measured twice over 12 months in 4730 individuals recruited from the general population. A preclinical investigation of a model of OA pain in normo-anxiety Sprague-Dawley (SD) and high-anxiety Wistar Kyoto (WKY) rats assessed underlying neurobiological mechanisms. Higher anxiety, independently from depression, was associated with significantly lower pressure pain detection thresholds at sites local to (P < 0.01) and distant from (P < 0.05) the painful knee in patients with OA. Separately, high anxiety scores predicted increased risk of knee pain onset in 3274 originally pain-free people over the 1-year period (odds ratio = 1.71; 95% confidence interval = 1.25-2.34, P < 0.00083). Similarly, WKY rats developed significantly lower ipsilateral and contralateral hind paw withdrawal thresholds in the monosodium iodoacetate model of OA pain, compared with SD rats (P = 0.0005). Linear regressions revealed that baseline anxiety-like behaviour was predictive of lowered paw withdrawal thresholds in WKY rats, mirroring the human data. This augmented pain phenotype was significantly associated with increased glial fibrillary acidic protein immunofluorescence in pain-associated brain regions, identifying supraspinal astrocyte activation as a significant mechanism underlying anxiety-augmented pain behaviour.


Subject(s)
Anxiety/etiology , Astrocytes/physiology , Chronic Pain/complications , Musculoskeletal Pain/complications , Musculoskeletal Pain/pathology , Aged , Animals , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Middle Aged , Pain Measurement , Psychiatric Status Rating Scales , Rats, Inbred WKY , Rats, Sprague-Dawley
5.
Eur Neuropsychopharmacol ; 26(2): 208-224, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26723167

ABSTRACT

Current antipsychotic medication is largely ineffective against the negative and cognitive symptoms of schizophrenia. One promising therapeutic development is to design new molecules that balance actions on dopamine D2 and D3 receptors to maximise benefits and limit adverse effects. This study used two rodent paradigms to investigate the action of the dopamine D3-preferring D3/D2 receptor partial agonist cariprazine. In adult male rats, cariprazine (0.03-0.3 mg/kg i.p.), and the atypical antipsychotic aripiprazole (1-3 mg/kg i.p.) caused dose-dependent reversal of a delay-induced impairment in novel object recognition (NOR). Treating neonatal rat pups with phencyclidine (PCP) and subsequent social isolation produced a syndrome of behavioural alterations in adulthood including hyperactivity in a novel arena, deficits in NOR and fear motivated learning and memory, and a reduction and change in pattern of social interaction accompanied by increased ultrasonic vocalisations (USVs). Acute administration of cariprazine (0.1 and 0.3 mg/kg) and aripiprazole (3 mg/kg) to resultant adult rats reduced neonatal PCP-social isolation induced locomotor hyperactivity and reversed NOR deficits. Cariprazine (0.3 mg/kg) caused a limited reversal of the social interaction deficit but neither drug affected the change in USVs or the deficit in fear motivated learning and memory. Results suggest that in the behavioural tests investigated cariprazine is at least as effective as aripiprazole and in some paradigms it showed additional beneficial features further supporting the advantage of combined dopamine D3/D2 receptor targeting. These findings support recent clinical studies demonstrating the efficacy of cariprazine in treatment of negative symptoms and functional impairment in schizophrenia patients.


Subject(s)
Memory Disorders/drug therapy , Memory Disorders/etiology , Piperazines/pharmacology , Piperazines/therapeutic use , Recognition, Psychology/drug effects , Schizophrenia/drug therapy , Analysis of Variance , Animals , Animals, Newborn , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Association Learning/drug effects , Developmental Disabilities/chemically induced , Developmental Disabilities/complications , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/toxicity , Exploratory Behavior/drug effects , Interpersonal Relations , Locomotion/drug effects , Male , Phencyclidine/toxicity , Rats , Schizophrenia/etiology
6.
EMBO Mol Med ; 4(10): 1043-56, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23027611

ABSTRACT

Cognitive deficits in schizophrenia severely compromise quality of life and are poorly controlled by current antipsychotics. While 5-HT(6) receptor blockade holds special promise, molecular substrates underlying their control of cognition remain unclear. Using a proteomic strategy, we show that 5-HT(6) receptors physically interact with several proteins of the mammalian target of rapamycin (mTOR) pathway, including mTOR. Further, 5-HT(6) receptor activation increased mTOR signalling in rodent prefrontal cortex (PFC). Linking this signalling event to cognitive impairment, the mTOR inhibitor rapamycin prevented deficits in social cognition and novel object discrimination induced by 5-HT(6) agonists. In two developmental models of schizophrenia, specifically neonatal phencyclidine treatment and post-weaning isolation rearing, the activity of mTOR was enhanced in the PFC, and rapamycin, like 5-HT(6) antagonists, reversed these cognitive deficits. These observations suggest that recruitment of mTOR by prefrontal 5-HT(6) receptors contributes to the perturbed cognition in schizophrenia, offering new vistas for its therapeutic control.


Subject(s)
Cognition , Receptors, Serotonin/metabolism , Schizophrenia/physiopathology , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Humans , Male , Mice , Protein Interaction Mapping , Proteome/analysis , Proteomics/methods , Rats
7.
J Pharmacol Exp Ther ; 340(3): 765-80, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178753

ABSTRACT

The present studies characterized the functional profile of N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-1,2-dihydro-3-H-benzo[e]indole-3-carboxamide) (S32212), a combined serotonin (5-HT)(2C) receptor inverse agonist and α(2)-adrenoceptor antagonist that also possesses 5-HT(2A) antagonist properties (J Pharmacol Exp Ther 340:750-764, 2012). Upon parenteral and/or oral administration, dose-dependent (0.63-40.0 mg/kg) actions were observed in diverse procedures. Both acute and subchronic administration of S32212 reduced immobility time in a forced-swim test in rats. Acutely, it also suppressed marble burying and aggressive behavior in mice. Long-term administration of S32212 was associated with rapid (1 week) and sustained (5 weeks) normalization of sucrose intake in rats exposed to chronic mild stress and with elevated levels of mRNA encoding brain-derived neurotrophic factor in hippocampus and amygdala (2 weeks). S32212 accelerated the firing rate of adrenergic perikarya in the locus coeruleus and elevated dialysis levels of noradrenaline in the frontal cortex and hippocampus of freely moving rats. S32212 also elevated the frontocortical levels of dopamine and acetylcholine, whereas 5-HT, amino acids, and histamine were unaffected. These neurochemical actions were paralleled by "promnemonic" properties: blockade of scopolamine-induced deficits in radial maze performance and social recognition and reversal of delay-induced impairments in social recognition, social novelty discrimination, and novel object recognition. It also showed anxiolytic actions in a Vogel conflict procedure. Furthermore, in an electroencephalographic study of sleep architecture, S32212 enhanced slow-wave and rapid eye movement sleep, while decreasing waking. Finally, chronic administration of S32212 neither elevated body weight nor perturbed sexual behavior in male rats. In conclusion, S32212 displays a functional profile consistent with improved mood and cognitive performance, together with satisfactory tolerance.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Indoles/pharmacology , Piperazines/pharmacology , Receptor, Serotonin, 5-HT2C/drug effects , Acetylcholine/analysis , Aggression/drug effects , Amygdala/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Dopamine/analysis , Dose-Response Relationship, Drug , Drug Inverse Agonism , Hippocampus/metabolism , Male , Mice , Motor Activity/drug effects , Norepinephrine/analysis , Rats , Rats, Wistar , Scopolamine/pharmacology , Sexual Behavior, Animal/drug effects , Sleep/drug effects , Sleep/physiology , Swimming
8.
Int J Neuropsychopharmacol ; 15(4): 471-84, 2012 May.
Article in English | MEDLINE | ID: mdl-21414250

ABSTRACT

Dopamine D3 receptors are densely expressed in mesolimbic projection areas, and selective antagonists enhance cognition, consistent with their potential therapeutic use in the treatment of schizophrenia. This study examines the effect of dopamine D3 vs. D2 receptor antagonists on the cognitive impairment and hyperactivity produced by social isolation of rat pups, in a neurodevelopmental model of certain deficits of schizophrenia. Three separate groups of male Lister hooded rats were group-housed or isolation-reared from weaning. Six weeks later rats received either vehicle or the dopamine D3 selective antagonist, S33084 (0.04 and 0.16 mg/kg), the preferential D3 antagonist, S33138 (0.16 and 0.63 mg/kg) or the preferential D2 antagonist, L-741,626 (0.63 mg/kg) s.c. 30 min prior to recording; horizontal locomotor activity in a novel arena for 60 min and, the following day, novel object discrimination using a 2-h inter-trial interval. Isolation rearing induced locomotor hyperactivity in a novel arena and impaired novel object discrimination compared to that in group-housed littermates. Both S33084 and S33138 restored novel object discrimination deficits in isolation-reared rats without affecting discrimination in group-housed controls. By contrast, L-741,626 impaired novel object discrimination in group-housed rats, without affecting impairment in isolates. S33084 (0.16 mg/kg), S33138 and, less markedly, L741,626 reduced the locomotor hyperactivity in isolates without attenuating activity in group-housed controls. Selective blockade of dopamine D3 receptors reverses the visual recognition memory deficit and hyperactivity produced by isolation rearing. These data support further investigation of the potential use of dopamine D3 receptor antagonists to treat schizophrenia.


Subject(s)
Discrimination, Psychological/physiology , Memory Disorders/psychology , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Social Isolation/psychology , Analysis of Variance , Animals , Animals, Newborn , Discrimination, Psychological/drug effects , Disease Models, Animal , Dopamine Antagonists/therapeutic use , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Hyperkinesis/drug therapy , Hyperkinesis/etiology , Hyperkinesis/psychology , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Motor Activity/drug effects , Rats , Receptors, Dopamine D3/antagonists & inhibitors , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Weaning
9.
Neuropsychopharmacology ; 37(3): 770-86, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22030711

ABSTRACT

Dopamine D(3) receptor antagonists exert pro-cognitive effects in both rodents and primates. Accordingly, this study compared the roles of dopamine D(3) vs D(2) receptors in social novelty discrimination (SND), which relies on olfactory cues, and novel object recognition (NOR), a visual-recognition task. The dopamine D(3) receptor antagonist, S33084 (0.04-0.63 mg/kg), caused a dose-related reversal of delay-dependent impairment in both SND and NOR procedures in adult rats. Furthermore, mice genetically deficient in dopamine D(3) receptors displayed enhanced discrimination in the SND task compared with wild-type controls. In contrast, acute treatment with the preferential dopamine D(2) receptor antagonist, L741,626 (0.16-5.0 mg/kg), or with the dopamine D(3) agonist, PD128,907 (0.63-40 µg/kg), caused a dose-related impairment in performance in rats in both tasks after a short inter-trial delay. Bilateral microinjection of S33084 (2.5 µg/side) into the prefrontal cortex (PFC) of rats increased SND and caused a dose-related (0.63-2.5 µg/side) improvement in NOR, while intra-striatal injection (2.5 µg/side) had no effect on either. In contrast, bilateral microinjection of L741,626 into the PFC (but not striatum) caused a dose-related (0.63-2.5 µg/side) impairment of NOR. These observations suggest that blockade of dopamine D(3) receptors enhances both SND and NOR, whereas D(3) receptor activation or antagonism of dopamine D(2) receptor impairs cognition in these paradigms. Furthermore, these actions are mediated, at least partly, by the PFC. These data have important implications for exploitation of dopaminergic mechanisms in the treatment of schizophrenia and other CNS disorders, and support the potential therapeutic utility of dopamine D(3) receptor antagonism.


Subject(s)
Discrimination, Psychological/drug effects , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists , Prefrontal Cortex/drug effects , Receptors, Dopamine D3/antagonists & inhibitors , Recognition, Psychology/drug effects , Animals , Benzopyrans/pharmacology , Dose-Response Relationship, Drug , Indoles/pharmacology , Male , Mice , Mice, Knockout , Microinjections , Piperidines/pharmacology , Prefrontal Cortex/metabolism , Pyrroles/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism
10.
Int J Neuropsychopharmacol ; 13(8): 1035-51, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20663270

ABSTRACT

Although dopamine D(3) receptor antagonists have been shown to enhance frontocortical cholinergic transmission and improve cognitive performance in rodents, data are limited and their effects have never been examined in primates. Accordingly, we characterized the actions of the D(3) receptor antagonist, S33138, in rats and rhesus monkeys using a suite of procedures in which cognitive performance was disrupted by several contrasting manipulations. S33138 dose-dependently (0.01-0.63 mg/kg s.c.) blocked a delay-induced impairment of novel object recognition in rats, a model of visual learning and memory. Further, S33138 (0.16-2.5 mg/kg s.c.) similarly reduced a delay-induced deficit in social novelty discrimination in rats, a procedure principally based on olfactory cues. Adult rhesus monkeys were trained to perform cognitive procedures, then chronically exposed to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine which produced cognitive impairment without motor disruption. In an attentional set-shifting task of cognitive flexibility involving an extra-dimensional shift, deficits were reversed by S33138 (0.04 and 0.16 mg/kg p.o.). S33138 also significantly improved accuracy (0.04 and 0.16 mg/kg p.o.) at short (but not long) delays in a variable delayed-response task of attention and working memory. Finally, in a separate set of experiments performed in monkeys displaying age-related deficits, S33138 significantly (0.16 and 0.63 mg/kg p.o.) improved task accuracies for long delay intervals in a delayed matching-to-sample task of working memory. In conclusion, S33138 improved performance in several rat and primate procedures of cognitive impairment. These data underpin interest in D(3) receptor blockade as a strategy for improving cognitive performance in CNS disorders like schizophrenia and Parkinson's disease.


Subject(s)
Acetanilides/therapeutic use , Benzopyrans/therapeutic use , Cognition Disorders/drug therapy , Dopamine Antagonists/therapeutic use , Receptors, Dopamine D3/antagonists & inhibitors , Acetanilides/metabolism , Acetanilides/pharmacology , Animals , Benzopyrans/metabolism , Benzopyrans/pharmacology , Cognition Disorders/metabolism , Cognition Disorders/psychology , Dopamine Antagonists/metabolism , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Female , Macaca mulatta , Male , Rats , Rats, Wistar , Receptors, Dopamine D3/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...