Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(755): eadg7123, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985855

ABSTRACT

Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Humans , Animals , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Neoplasms/immunology , Neoplasms/therapy , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Signal Transduction
2.
Nature ; 628(8007): 416-423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538786

ABSTRACT

Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor ß-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.


Subject(s)
Immunoconjugates , Leukemia, T-Cell , Lymphoma, T-Cell , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Animals , Female , Humans , Mice , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Immunotherapy, Adoptive , Leukemia, T-Cell/drug therapy , Leukemia, T-Cell/immunology , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
3.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38234817

ABSTRACT

Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary: Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.

4.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546808

ABSTRACT

Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary: ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.

5.
Sci Immunol ; 6(57)2021 03 01.
Article in English | MEDLINE | ID: mdl-33649101

ABSTRACT

Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Neoplasm , Biomarkers, Tumor/antagonists & inhibitors , Mutant Proteins/antagonists & inhibitors , ras Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Bispecific/immunology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cell Line , Cross Reactions , HLA Antigens/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutation , Peptide Fragments , Protein Binding/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , ras Proteins/chemistry , ras Proteins/genetics , ras Proteins/immunology
6.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33649166

ABSTRACT

TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Neoplasms/therapy , Tumor Suppressor Protein p53/immunology , Alleles , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/therapeutic use , Arginine/genetics , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , Histidine/genetics , Humans , Immunization, Passive , Jurkat Cells , Lymphocyte Activation , Mice, Inbred NOD , Mutation , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...