Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clean Prod ; 176: 1316-1322, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-31534306

ABSTRACT

This paper presents a simple computational model for determining whether additive manufacturing or subtractive manufacturing is more energy efficient for production of a given metallic part. The key discriminating variable is the fraction of the bounding envelope that contains material - i.e. the volume fraction of solid material. For both the additive process and the subtractive process, the total energy associated with the production of a part is defined in terms of the volume fraction of that part. The critical volume fraction is that for which the energy consumed by subtractive manufacturing equals the energy consumed by additive manufacturing. For volume fractions less than the critical value, additive manufacturing is more energy efficient. For volume fractions greater than the critical value, subtractive manufacturing is more efficient. The model considers the entire manufacturing lifecycle - from production and transport of feedstock material through processing to return of post-production scrap for recycling. Energy consumed by processing equipment while idle is also accounted for in the model. Although the individual energy components in the model are identified and accounted for in the expressions for additive and subtractive manufacturing, values for many of these components may not be currently available. Energy values for some materials' production and subtractive and additive manufacturing processes can be found in the literature. However, since many of these data are reported for a very specific application, it may be difficult, if not impossible, to reliably apply these data to new process-material manufacturing scenarios since, very often, insufficient information is provided to enable extrapolation to broader use. Consequently, this paper also highlights the need to develop improved knowledge of the energy embodied in each phase of the manufacturing process. To be most valuable, users of the model should determine the energy consumed by their manufacturing process equipment on the basis of energy-per-unit-volume of production for each material of interest - considering both alloy composition and form. Energy consumed during machine idle per unit time should also be determined by the user then scaled to specific processing scenarios. Energy required to generate feedstock material (billet, plate, bar, wire, powder) must be obtained from suppliers.

2.
Astrophys J ; 326(2): 924-30, 1988 Mar 15.
Article in English | MEDLINE | ID: mdl-11538339

ABSTRACT

We have detected the 1(10)-1(01) transition of C3HD at 19.418 GHz at twelve positions in cold, dark clouds and resolved the D hyperfine components in two sources (L1498 and TMC-1C) well enough to derive values for the D quadrupole coupling constants. Simultaneous observations of C3H2 in each source yield relative integrated line intensities in the range 0.10-0.18, from which we derive relative [C3HD]/[C3H2] abundances in the range 0.05-0.15. These are among the highest deuteration ratios yet observed. Within the limits of the observational and modeling uncertainties it is possible to explain the derived [C3HD]/[C3H2] ratios by ion-molecule chemistry if [e-] approximately 3 x 10(-7).


Subject(s)
Astronomy , Deuterium/analysis , Deuterium/chemistry , Extraterrestrial Environment , Hydrocarbons/analysis , Astronomical Phenomena , Models, Theoretical , Spectrum Analysis
3.
Chem Phys Lett ; 136(6): 588-92, 1987 May 22.
Article in English | MEDLINE | ID: mdl-11538338

ABSTRACT

The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.


Subject(s)
Astronomy , Deuterium/chemistry , Extraterrestrial Environment , Hydrocarbons/analysis , Astronomical Phenomena , Deuterium/analysis , Spectroscopy, Fourier Transform Infrared
5.
Appl Opt ; 14(3): 549-52, 1975 Mar 01.
Article in English | MEDLINE | ID: mdl-20134922
SELECTION OF CITATIONS
SEARCH DETAIL
...