Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 111(3): 635-645, 2022 03.
Article in English | MEDLINE | ID: mdl-34687548

ABSTRACT

Increasing prevalence of infections caused by antimicrobial-resistant gram-negative bacteria represents a global health crisis, and while several novel therapies that target various aspects of antimicrobial resistance have been introduced in recent years, few are currently approved for children. Ceftazidime-avibactam is a novel ß-lactam ß-lactamase inhibitor combination approved for adults and children 3 months and older with complicated intra-abdominal infection, and complicated urinary tract infection or hospital-acquired ventilator-associated pneumonia (adults only in the United States) caused by susceptible gram-negative bacteria. Extensive population pharmacokinetic (PK) data sets for ceftazidime and avibactam obtained during the adult clinical development program were used to iteratively select, modify, and validate the approved adult dosage regimen (2,000-500 mg by 2-hour intravenous (IV) infusion every 8 hours (q8h), with adjustments for renal function). Following the completion of one phase I (NCT01893346) and two phase II ceftazidime-avibactam studies (NCT02475733 and NCT02497781) in children, adult PK data sets were updated with pediatric PK data. This paper describes the development of updated combined adult and pediatric population PK models and their application in characterizing the population PK of ceftazidime and avibactam in children, and in dose selection for further pediatric evaluation. The updated models supported the approval of ceftazidime-avibactam pediatric dosage regimens (all by 2-hour IV infusion) of 50-12.5 mg/kg (maximum 2,000-500 mg) q8h for those ≥6 months to 18 years old, and 40-10 mg/kg q8h for those ≥3 to 6 months old with creatinine clearance > 50 mL/min/1.73 m2 .


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/pharmacokinetics , beta-Lactamase Inhibitors/pharmacokinetics , Adolescent , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Ceftazidime/therapeutic use , Child , Child, Preschool , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Infant , Intraabdominal Infections/drug therapy , Intraabdominal Infections/microbiology , Male , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Probability , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , beta-Lactamase Inhibitors/therapeutic use
2.
Toxicol Appl Pharmacol ; 287(1): 9-16, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26026369

ABSTRACT

Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED50 values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1h; >200 fold at 6h) than with tiotropium (1.5 and 4.2 fold at 1h; 4.6 and 5.5 fold at 6h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M2 muscarinic receptor occupancy, which predicted significantly higher M2 receptor blockade at ED50 doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium.


Subject(s)
Bronchoconstriction/drug effects , Bronchodilator Agents/pharmacokinetics , Cardiovascular System/drug effects , Glycopyrrolate/pharmacokinetics , Muscarinic Antagonists/pharmacokinetics , Scopolamine Derivatives/pharmacokinetics , Airway Resistance/drug effects , Animals , Blood Pressure/drug effects , Bradycardia/chemically induced , Bradycardia/physiopathology , Bronchial Provocation Tests , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/blood , Bronchodilator Agents/toxicity , Cardiovascular System/physiopathology , Glycopyrrolate/administration & dosage , Glycopyrrolate/blood , Glycopyrrolate/toxicity , Heart Rate/drug effects , Hypotension/chemically induced , Hypotension/physiopathology , Male , Models, Biological , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/blood , Muscarinic Antagonists/toxicity , Protein Binding , Radioligand Assay , Rats, Inbred BN , Receptor, Muscarinic M2/drug effects , Receptor, Muscarinic M2/metabolism , Risk Assessment , Scopolamine Derivatives/administration & dosage , Scopolamine Derivatives/blood , Scopolamine Derivatives/toxicity , Tiotropium Bromide
3.
Drug Metab Dispos ; 39(7): 1203-13, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21451120

ABSTRACT

5-[2-Ethoxy-5-(4-ethyl-piperazine-1-sulfonyl)-pyridin-3-yl]-3-ethyl-2-(2-methoxy-ethyl)-2,6-dihydro-pyrazolo[4,3-d]pyrimidin-7-one (UK-369,003) is a phosphodiesterase-5 inhibitor in clinical development at Pfizer. UK-369,003 is predominantly metabolized by cytochrome P450 3A4 and is also a substrate for the efflux transporter P-glycoprotein. The pharmacokinetics of UK-369,003 has been profiled after oral administration of 1 to 800 mg of an immediate release formulation to healthy volunteers. Nonlinearity was observed in the systemic exposure at doses of 100 mg and greater. In addition, the pharmacokinetics of UK-369,003 has also been investigated after oral administration of the more therapeutically attractive modified release formulation. Systemic exposure was prolonged with the modified release formulation, but bioavailability was reduced in comparison with that of the immediate release formulation. Physiologically based pharmacokinetic modeling strategies are commonly used in drug discovery and development. This work describes application of the physiologically based pharmacokinetic software GastroPlus to understand the pharmacokinetics of UK-369,003. The impact of gut wall and hepatically mediated CYP3A4 metabolism, in addition to the actions of P-glycoprotein, in causing the nonlinear pharmacokinetics of the immediate release formulation and the reduced bioavailability of the modified release form, was investigated. The model accurately described the systemic exposure of UK-369,003 after intravenous and both immediate and modified release oral administration and suggested that CYP3A4 is responsible for the majority of the nonlinearity in systemic exposure observed after administration of the immediate release form. Conversely, the reduced bioavailability of the modified release formulation is believed to be caused by incomplete release from the device, incomplete absorption of released drug, and, to a lesser extent, CYP3A4 metabolism.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/drug effects , Phosphodiesterase Inhibitors/pharmacokinetics , Pyrimidinones/pharmacokinetics , Sulfonamides/pharmacokinetics , Administration, Oral , Dose-Response Relationship, Drug , Humans , Infusions, Intravenous , Male , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/pharmacology , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology
4.
Clin Pharmacokinet ; 50(5): 331-47, 2011 May.
Article in English | MEDLINE | ID: mdl-21456633

ABSTRACT

BACKGROUND: The importance of predicting human pharmacokinetics during compound selection has been recognized in the pharmaceutical industry. To this end there are many different approaches that are applied. METHODS: In this study we compared the accuracy of physiologically based pharmacokinetic (PBPK) methodologies implemented in GastroPlus™ with the one-compartment approach routinely used at Pfizer for human pharmacokinetic plasma concentration-time profile prediction. Twenty-one Pfizer compounds were selected based on the availability of relevant preclinical and clinical data. Intravenous and oral human simulations were performed for each compound. To understand any mispredictions, simulations were also performed using the observed clearance (CL) value as input into the model. RESULTS: The simulation results using PBPK were shown to be superior to those obtained via traditional one-compartment analyses. In many cases, this difference was statistically significant. Specifically, the results showed that the PBPK approach was able to accurately predict passive distribution and absorption processes. Some issues and limitations remain with respect to the prediction of CL and active transport processes and these need to be improved to further increase the utility of PBPK modelling. A particular advantage of the PBPK approach is its ability to accurately predict the multiphasic shape of the pharmacokinetic profiles for many of the compounds tested. CONCLUSION: The results from this evaluation demonstrate the utility of PBPK methodology for the prediction of human pharmacokinetics. This methodology can be applied at different stages to enhance the understanding of the compounds in a particular chemical series, guide experiments, aid candidate selection and inform clinical trial design.


Subject(s)
Computer Simulation , Models, Biological , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Dogs , Half-Life , Humans , Injections, Intravenous , Metabolic Clearance Rate , Microsomes, Liver/metabolism , Pharmaceutical Preparations/chemistry , Rats , Retrospective Studies , Species Specificity
5.
J Pharmacol Toxicol Methods ; 63(3): 304-13, 2011.
Article in English | MEDLINE | ID: mdl-21419854

ABSTRACT

INTRODUCTION: Delayed ventricular repolarisation is manifested electrocardiographically in a prolongation of the QT interval. Such prolongation can lead to potentially fatal Torsades de Pointes. Moxifloxacin is a fluoroquinolone antibiotic which has been associated with QT prolongation and, as a result, is recommended by the regulatory authorities as a positive control in thorough QT studies performed to evaluate the potential of new chemical entities to induce QT prolongation in humans. The sensitivity of the cynomolgus monkey as a quantitative preclinical predictor of the PK-QTc relationship is discussed. METHODS: Cardiovascular monitoring was performed in the telemetered cynomolgus monkey for 22 h following oral administration of Moxifloxacin (10, 30 and 90 mg/kg) or placebo. QTc was derived using an individual animal correction factor (ICAF): RR-I = QT-I--(RR-550)* (IACF). A PKPD analysis was performed to quantify the increase in placebo-adjusted QTc) elicited by administration of Moxifloxacin. In addition, the rate of onset of hERG channel blockade of Moxifloxacin was compared to Dofetilide by whole cell patch clamp technique in HEK-293 cells stably expressing the hERG channels. RESULTS: Moxifloxacin induced a dose dependent increase in QTc). A maximum increase of 28 ms was observed following administration of 90 mg/kg Moxifloxacin. The corresponding maximum free systemic exposure was 18µM. Interrogation of the PK-QTc relationship indicated a direct relationship between the systemic exposure of Moxifloxacin and increased QTc. A linear PKPD model was found to describe this relationship whereby a 1.5 ms increase in QTc was observed for every 1 µM increase in free systemic exposure. DISCUSSION: The exposure dependent increases in QTc observed following oral administration of Moxifloxacin to the cynomolgus monkey are in close agreement with those previously reported in human subjects. A direct effect linear relationship was found to be conserved in both species. As a result of the quantitative agreement in both species, the utility of the telemetered cynomolgus monkey as a preclinical predictor of QTc) prolongation is exemplified. Furthermore, the rate of onset of hERG channel blockade observed in patch clamp offers a mechanistic insight into the relative rates of channel blockade observed in vivo with both Moxifloxacin and Dofetilide.


Subject(s)
Aza Compounds/pharmacology , Aza Compounds/pharmacokinetics , Disease Models, Animal , Long QT Syndrome/chemically induced , Macaca fascicularis , Quinolines/pharmacology , Quinolines/pharmacokinetics , Action Potentials/drug effects , Administration, Oral , Animals , Aza Compounds/blood , Blood Proteins/metabolism , Cell Line , ERG1 Potassium Channel , Electrocardiography , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , Fluoroquinolones , Humans , Long QT Syndrome/blood , Long QT Syndrome/metabolism , Moxifloxacin , Patch-Clamp Techniques , Protein Binding , Quinolines/blood , Telemetry , Transfection
6.
AAPS J ; 11(1): 155-66, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19280352

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are composed of a series of differential equations and have been implemented in a number of commercial software packages. These models require species-specific and compound-specific input parameters and allow for the prediction of plasma and tissue concentration time profiles after intravenous and oral administration of compounds to animals and humans. PBPK models allow the early integration of a wide variety of preclinical data into a mechanistic quantitative framework. Use of PBPK models allows the experimenter to gain insights into the properties of a compound, helps to guide experimental efforts at the early stages of drug discovery, and enables the prediction of human plasma concentration time profiles with minimal (and in some cases no) animal data. In this review, the application and limitations of PBPK techniques in drug discovery are discussed. Specific reference is made to its utility (1) at the lead development stage for the prioritization of compounds for animal PK studies and (2) at the clinical candidate selection and "first in human" stages for the prediction of human PK.


Subject(s)
Computer Simulation , Drug Discovery , Models, Biological , Pharmacokinetics , Administration, Oral , Algorithms , Animals , Humans , Injections, Intravenous , Intestinal Absorption , Osmolar Concentration , Pharmaceutical Preparations/blood , Rats , Software , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...