Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(23): 236502, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134803

ABSTRACT

We study the temperature evolution of quasiparticles in the correlated metal Sr_{2}RuO_{4}. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle residue Z increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr_{2}RuO_{4} not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr_{2}RuO_{4}-defined as the loci where the spectral function peaks-deflates with increasing temperature. These findings are in semiquantitative agreement with dynamical mean field theory calculations.

2.
Phys Rev Lett ; 131(4): 046401, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566843

ABSTRACT

The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.

3.
Nat Commun ; 12(1): 6739, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795276

ABSTRACT

Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle interference is dominated by a quasi-2D electronic structure. Here, we explore QPI imaging of galena, a material with an electronic structure that does not exhibit pronounced anisotropy. We find that the quasiparticle interference signal is dominated by scattering vectors which are parallel to the surface plane however originate from bias-dependent cuts of the 3D electronic structure. We develop a formalism for the theoretical description of the QPI signal and demonstrate how this quasiparticle tomography can be used to obtain information about the 3D electronic structure and orbital character of the bands.

4.
Nature ; 584(7819): E4, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32690939

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Adv ; 6(6): eaaz0611, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128385

ABSTRACT

A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an "intertwined" excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.

6.
Nat Commun ; 10(1): 5485, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792208

ABSTRACT

Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.

7.
Nature ; 566(7745): 518-522, 2019 02.
Article in English | MEDLINE | ID: mdl-30742073

ABSTRACT

The major breakthroughs in understanding of topological materials over the past decade were all triggered by the discovery of the Z2-type topological insulator-a type of material that is insulating in its interior but allows electron flow on its surface. In three dimensions, a topological insulator is classified as either 'strong' or 'weak'1,2, and experimental confirmations of the strong topological insulator rapidly followed theoretical predictions3-5. By contrast, the weak topological insulator (WTI) has so far eluded experimental verification, because the topological surface states emerge only on particular side surfaces, which are typically undetectable in real three-dimensional crystals6-10. Here we provide experimental evidence for the WTI state in a bismuth iodide, ß-Bi4I4. Notably, the crystal has naturally cleavable top and side planes-stacked via van der Waals forces-which have long been desirable for the experimental realization of the WTI state11,12. As a definitive signature of this state, we find a quasi-one-dimensional Dirac topological surface state at the side surface (the (100) plane), while the top surface (the (001) plane) is topologically dark with an absence of topological surface states. We also find that a crystal transition from the ß-phase to the α-phase drives a topological phase transition from a nontrivial WTI to a normal insulator at roughly room temperature. The weak topological phase-viewed as quantum spin Hall insulators stacked three-dimensionally13,14-will lay a foundation for technology that benefits from highly directional, dense spin currents that are protected against backscattering.

8.
Nat Commun ; 9(1): 2305, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899336

ABSTRACT

Strong many-body interactions in solids yield a host of fascinating and potentially useful physical properties. Here, from angle-resolved photoemission experiments and ab initio many-body calculations, we demonstrate how a strong coupling of conduction electrons with collective plasmon excitations of their own Fermi sea leads to the formation of plasmonic polarons in the doped ferromagnetic semiconductor EuO. We observe how these exhibit a significant tunability with charge carrier doping, leading to a polaronic liquid that is qualitatively distinct from its more conventional lattice-dominated analogue. Our study thus suggests powerful opportunities for tailoring quantum many-body interactions in solids via dilute charge carrier doping.

9.
Phys Rev Lett ; 120(8): 086402, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543003

ABSTRACT

Experimental determinations of bulk band topology in the solid states have been so far restricted to only indirect investigation through the probing of surface states predicted by electronic structure calculations. We here present an alternative approach to determine the band topology by means of bulk-sensitive soft x-ray angle-resolved photoemission spectroscopy. We investigate the bulk electronic structures of the series materials, Ce monopnictides (CeP, CeAs, CeSb, and CeBi). By performing a paradigmatic study of the band structures as a function of their spin-orbit coupling, we draw the topological phase diagram and unambiguously reveal the topological phase transition from a trivial to a nontrivial regime in going from CeP to CeBi induced by the band inversion. The underlying mechanism of the phase transition is elucidated in terms of spin-orbit coupling in concert with their semimetallic band structures. Our comprehensive observations provide a new insight into the band topology hidden in the bulk states.

10.
Phys Rev Lett ; 118(9): 097002, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306267

ABSTRACT

We present angle-resolved photoemission spectroscopy measurements of the quasi-one-dimensional superconductor K_{2}Cr_{3}As_{3}. We find that the Fermi surface contains two Fermi surface sheets, with linearly dispersing bands not displaying any significant band renormalizations. The one-dimensional band dispersions display a suppression of spectral intensity approaching the Fermi level according to a linear power law, over an energy range of ∼200 meV. This is interpreted as a signature of Tomonoga-Luttinger liquid physics, which provides a new perspective on the possibly unconventional superconductivity in this family of compounds.

12.
Phys Rev Lett ; 115(2): 027006, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26207500

ABSTRACT

Magnetoresistivity ρ(xx) and Hall resistivity ρ(xy) in ultrahigh magnetic fields up to 88 T are measured down to 0.15 K to clarify the multiband electronic structure in high-quality single crystals of superconducting FeSe. At low temperatures and high fields we observe quantum oscillations in both resistivity and the Hall effect, confirming the multiband Fermi surface with small volumes. We propose a novel approach to identify from magnetotransport measurements the sign of the charge carriers corresponding to a particular cyclotron orbit in a compensated metal. The observed significant differences in the relative amplitudes of the quantum oscillations between the ρ(xx) and ρ(xy) components, together with the positive sign of the high-field ρ(xy), reveal that the largest pocket should correspond to the hole band. The low-field magnetotransport data in the normal state suggest that, in addition to one hole and one almost compensated electron band, the orthorhombic phase of FeSe exhibits an additional tiny electron pocket with a high mobility.

13.
Phys Rev Lett ; 114(11): 117201, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25839304

ABSTRACT

Cd(3)As(2) is a candidate three-dimensional Dirac semimetal which has exceedingly high mobility and nonsaturating linear magnetoresistance that may be relevant for future practical applications. We report magnetotransport and tunnel diode oscillation measurements on Cd(3)As(2), in magnetic fields up to 65 T and temperatures between 1.5 and 300 K. We find that the nonsaturating linear magnetoresistance persists up to 65 T and it is likely caused by disorder effects, as it scales with the high mobility rather than directly linked to Fermi surface changes even when approaching the quantum limit. From the observed quantum oscillations, we determine the bulk three-dimensional Fermi surface having signatures of Dirac behavior with a nontrivial Berry phase shift, very light effective quasiparticle masses, and clear deviations from the band-structure predictions. In very high fields we also detect signatures of large Zeeman spin splitting (g∼16).

14.
Phys Rev Lett ; 110(25): 257002, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829753

ABSTRACT

We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

15.
Phys Rev Lett ; 108(4): 047002, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400881

ABSTRACT

We report a de Haas-van Alphen oscillation study of the 111 iron pnictide superconductors LiFeAs with T(c) ≈ 18 K and LiFeP with T(c) ≈ 5 K. We find that for both compounds the Fermi surface topology is in good agreement with density functional band-structure calculations and has almost nested electron and hole bands. The effective masses generally show significant enhancement, up to ~3 for LiFeP and ~5 for LiFeAs. However, one hole Fermi surface in LiFeP shows a very small enhancement, as compared with its other sheets. This difference probably results from k-dependent coupling to spin fluctuations and may be the origin of the different nodal and nodeless superconducting gap structures in LiFeP and LiFeAs, respectively.

16.
Phys Rev Lett ; 92(18): 188303, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15169538

ABSTRACT

A prototypical single-molecule chemical-field-effect transistor is presented, in which the current through a hybrid-molecular diode is modified by nanometer-sized charge transfer complexes covalently linked to a molecule in an STM junction. The effect is attributed to an interface dipole which shifts the substrate work function by approximately 120 meV. It is induced by the complexes from electron acceptors covalently bound to the molecule in the gap and electron donors coming from the ambient fluid. This proof of principle is regarded as a major step towards monomolecular electronic devices.

17.
Neurol Res ; 25(6): 635-41, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14503018

ABSTRACT

Chronic brain hypoperfusion (CBH) using permanent occlusion of both common carotid arteries in an aging rat model, has been shown to mimic human mild cognitive impairment (MCI), an acknowledged high risk condition that often converts to Alzheimer's disease. An aging rat model was used to determine whether hippocampal nitric oxide (NO) is abnormally expressed following CBH for two or eight weeks. At each time point, spatial memory was measured with the Morris water maze and hippocampal A beta 1-40/1-42 concentrations were obtained using sandwich ELISA. Real-time amperometric measures of NO representing the constitutive isoforms of neuronal nitric oxide synthase (nNOS) and endothelial (e)NOS were also taken at each time point to ascertain whether NO levels changed as a result of CBH, and if so, whether such NO changes preceded or followed any memory or amyloid-beta pathology. We found that two weeks after CBH, NO hippocampal levels were upregulated nearly four-fold when compared to nonoccluded rats but no alteration in spatial memory of A beta products were observed at this time point. By contrast, NO concentration had declined to control levels by eight weeks but spatial memory was found significantly impaired and A beta 1-40 (but not A beta 1-42) had increased in the CBH group when compared to control rats. Since changes in shear stress are known to upregulate eNOS but generally not nNOS, these results suggest that shear stress induced by CBH hyperactivated vascular NO derived from eNOS in the first two weeks as a reaction by the capillary endothelium to maintain homeostasis of local cerebral blood flow. The return of vascular NO to basal levels after eight weeks of CBH may have triggered metabolic changes within hippocampal cells resulting in hippocampal dysfunction as reflected by spatial memory impairment and by accumulation of A beta 1-40 peptide. In conclusion, our study shows that CBH initiates spatial memory loss in aging rats thus mimicking human MCI and also increases A beta 1-40 in the hippocampus. The memory and amyloid changes are preceded by NO upregulation in the hippocampus. These preliminary findings may be important in understanding, at least in part, the molecular mechanisms that precede memory impairment during chronic brain ischemia and as such, the pre-clinical stage leading to Alzheimer's disease.


Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/metabolism , Cerebrovascular Disorders/metabolism , Hippocampus/metabolism , Hypotension/metabolism , Memory Disorders/etiology , Nitric Oxide/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/physiopathology , Animals , Cerebrovascular Circulation/physiology , Cerebrovascular Disorders/complications , Cerebrovascular Disorders/physiopathology , Chronic Disease , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Hippocampus/pathology , Hippocampus/physiopathology , Hypotension/complications , Hypotension/physiopathology , Male , Maze Learning/physiology , Memory Disorders/physiopathology , Neurons/metabolism , Neurons/pathology , Nitric Oxide Synthase/metabolism , Rats , Rats, Sprague-Dawley , Stress, Mechanical , Up-Regulation/physiology
19.
Yeast ; 18(5): 473-80, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11255256

ABSTRACT

Six open reading frames (ORFs) of unknown function from the right arm of Saccharomyces cerevisiae chromosome XII were deleted in two genetic backgrounds by disruption cassettes with regions of short flanking homology. This work was carried out within the framework of the EUROFAN consortium. The SFH disruption cassettes, obtained by PCR, were made by amplification of the kanMX marker module with oligonucleotides containing approximately 40 bp of homology to either the promoter or translation terminator regions of the relevant ORF. Transformants resistant to geneticin (G418) were selected. The SFH disruption cassettes were cloned into a bacterial vector. Each cognate gene was also cloned into a yeast centromeric plasmid. Sporulation and tetrad analysis of the disrupted heterozygous strains revealed that ORF YLR153c (now known as ACS2) is essential. Basic phenotypic analysis was performed on haploid deletants of both mating types of the five non-essential ORFs, YLR082c (now known as SRL2), YLR149c, YLR151c, YLR152c and YLR154c. Plate growth tests on different media at 15 degrees C, 30 degrees C and 37 degrees C did not reveal any significant differences between parental and mutant cells. Mating and sporulation efficiencies were not affected in any of the viable disruptants as compared to wild-type cells.


Subject(s)
Chromosomes, Fungal/genetics , Open Reading Frames/genetics , Saccharomyces cerevisiae/genetics , Cloning, Molecular , DNA, Fungal/genetics , Haploidy , Mutagenesis, Insertional , Open Reading Frames/physiology , Phenotype , Polymerase Chain Reaction , Saccharomyces cerevisiae/growth & development
20.
Yeast ; 18(5): 481-8, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11255257

ABSTRACT

In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals - search completed 3rd Jan. 2001)


Subject(s)
Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...