Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 11(11)2019 10 26.
Article in English | MEDLINE | ID: mdl-31717743

ABSTRACT

Cyanobacterial blooms increasingly impair inland waters, with the potential for a concurrent increase in cyanotoxins that have been linked to animal and human mortalities. Microcystins (MCs) are among the most commonly detected cyanotoxins, but little is known about the distribution of different MC congeners despite large differences in their biomagnification, persistence, and toxicity. Using raw-water intake data from sites around the Great Lakes basin, we applied multivariate canonical analyses and regression tree analyses to identify how different congeners (MC-LA, -LR, -RR, and -YR) varied with changes in meteorological and nutrient conditions over time (10 years) and space (longitude range: 77°2'60 to 94°29'23 W). We found that MC-LR was associated with strong winds, warm temperatures, and nutrient-rich conditions, whereas the equally toxic yet less commonly studied MC-LA tended to dominate under intermediate winds, wetter, and nutrient-poor conditions. A global synthesis of lake data in the peer-reviewed literature showed that the composition of MC congeners differs among regions, with MC-LA more commonly reported in North America than Europe. Global patterns of MC congeners tended to vary with lake nutrient conditions and lake morphometry. Ultimately, knowledge of the environmental factors leading to the formation of different MC congeners in freshwaters is necessary to assess the duration and degree of toxin exposure under future global change.


Subject(s)
Bacterial Toxins/analysis , Climate , Environmental Monitoring/methods , Lakes/chemistry , Lakes/microbiology , Marine Toxins/analysis , Microcystins/analysis , Bacterial Toxins/toxicity , Europe , Marine Toxins/toxicity , Microcystins/toxicity , Nitrogen Compounds/analysis , United States
2.
Environ Pollut ; 252(Pt A): 697-705, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31185359

ABSTRACT

Diagenetic sediment phosphorus (P) recycling is a widespread phenomenon, which causes degradation of water quality and promotes harmful algal blooms in lakes worldwide. Strong P coupling with iron (Fe) in some lakes is thought to inhibit diagenetic P efflux, despite elevated P concentrations in the sediment. In these sediments, the high Fe content leads to P scavenging on ferric Fe near the sediment surface, which increases the overall P retention. Reduced external Fe inputs in such lakes due to industrial pollution control may lead to unintended consequences for sediment P retention. Here, we study sediment geochemistry and sediment-water interactions in the historically polluted Hamilton Harbour (Lake Ontario, Canada) which has undergone 30 years of restoration efforts. We investigate processes controlling diagenetic P recycling, which has previously been considered minor due to historically high Fe loading. Our results demonstrate that present sediment P release is substantial, despite sediment Fe content reaching 6.5% (dry weight). We conclude that the recent improvement of wastewater treatment and industrial waste management practices has reduced Fe pollution, causing a decrease in diagenetically reactive Fe phases, resulting in the reduction of the ratio of redox-sensitive P and Fe, and the suppression of P scavenging on Fe oxyhydroxides.


Subject(s)
Environmental Pollution/analysis , Lakes/chemistry , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Eutrophication , Geologic Sediments/chemistry , Harmful Algal Bloom , Iron/chemistry , Ontario , Oxidation-Reduction
3.
Sci Total Environ ; 636: 39-51, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29702401

ABSTRACT

Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m-2 d-1 in the upper bay compared to 1.5 mg P m-2 d-1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures.

4.
Sci Total Environ ; 575: 173-186, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27741453

ABSTRACT

Severe algal blooms in Lake Winnipeg since the late 1990s have been attributed to increased watershed nutrient loading, much of which is associated with suspended particles. Within-lake transport and fate of this nutrient fraction and the importance of internal loading via resuspension, however, are unknown. We measured radioisotopes (7Be, 210Pb, 137Cs), metal and nutrient contents of suspended solids in major tributaries and lake-water, in sediment traps and in bottom sediments to estimate sediment resuspension and mass accumulation rates using two models. Sedimentation rates calculated from 137Cs and 210Pb dated cores and sediment traps indicated that most (95-99%) suspended material is derived from bottom sediment; mixing models using7Be/210Pb and 137Cs yielded similarly high estimates (82 and 84%, respectively). 137Cs profiles in cores indicated that up to ~7cm remains actively resuspended for times up to 23years before incorporation into deeper sediments. Total and bioavailable phosphorus (TP, BAP) in this top sediment layer were generally lower in the North than the South Basin, likely reflecting inputs from the Assiniboine and Red Rivers at the southern end of Lake Winnipeg, with an average of ~30% TP as BAP. Estimates of average sediment-associated internal TP loading for the South Basin (0.264g/m2/y) were ~2× those for the North Basin (0.146g/m2/y). Together, this internal loading is comparable to the magnitude of the external loading. Our results indicate that surficial sediments in Lake Winnipeg will remain a significant and active source of internal nutrient loading for several decades, a process which may delay the response of the lake to external nutrient management.

5.
Harmful Algae ; 55: 121-136, 2016 05.
Article in English | MEDLINE | ID: mdl-28073525

ABSTRACT

The Bay of Quinte, a Z-shaped embayment at the northeastern end of Lake Ontario, has a long history of eutrophication problems primarily manifested as spatially extensive algal blooms and predominance of toxic cyanobacteria. The purpose of this study was to identify the structural changes of the phytoplankton community induced by two environmental alterations: point-source phosphorus (P) loading reduction in the late 1970s and establishment of dreissenid mussels in the mid-1990s. A combination of statistical techniques was used to draw inference about compositional shifts of the phytoplankton assemblage, the consistency of the seasonal succession patterns along with the mechanisms underlying the algal biovolume variability in the Bay of Quinte over the past three decades. Based on a number of diversity and similarity indices, the algal assemblages in the upper and middle segments of the Bay are distinctly different from those typically residing in the outer segments. Our analysis also identified significant differences among the phytoplankton communities, representing the pre- and post-P control as well as the pre- and post-dreissenid invasion periods. Recent shifts in phytoplankton community composition were mainly associated with increased frequency of occurrence of toxin-producing Microcystis outbreaks and reduced biovolume of N2 fixers, such as Aphanizomenon and Anabaena. Bayesian hierarchical models were developed to elucidate the importance of different abiotic factors (light attenuation, water temperature, phosphorus, and ammonium) on total cyanobacteria, Microcystis, Aphanizomenon, and Anabaena relative biovolume. Our modelling exercise suggests that there is significant spatial heterogeneity with respect to the role of the factors examined, and thus total phosphorus alone cannot always explain the year-to-year variability of cyanobacteria succession patterns in the system. The lessons learned from the present analysis will be helpful to the water quality criteria setting process and could influence the management decisions in order to delist the system as an Area of Concern.


Subject(s)
Bays , Bivalvia/physiology , Phytoplankton/physiology , Animals , Cyanobacteria/physiology , Ecosystem , Models, Biological , Nitrogen/metabolism , Ontario , Phosphorus/metabolism
6.
Appl Environ Microbiol ; 81(9): 3268-76, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25662977

ABSTRACT

Little is known about the molecular and physiological function of co-occurring microbes within freshwater cyanobacterial harmful algal blooms (cHABs). To address this, community metatranscriptomes collected from the western basin of Lake Erie during August 2012 were examined. Using sequence data, we tested the hypothesis that the activity of the microbial community members is independent of community structure. Predicted metabolic and physiological functional profiles from spatially distinct metatranscriptomes were determined to be ≥90% similar between sites. Targeted analysis of Microcystis aeruginosa, the historical causative agent of cyanobacterial harmful algal blooms over the past ∼20 years, as well as analysis of Planktothrix agardhii and Anabaena cylindrica, revealed ongoing transcription of genes involved in microcystin toxin synthesis as well as the acquisition of both nitrogen and phosphorus, nutrients often implicated as independent bottom-up drivers of eutrophication in aquatic systems. Transcription of genes involved in carbon dioxide (CO2) concentration and metabolism also provided support for the alternate hypothesis that high-pH conditions and dense algal biomass result in CO2-limiting conditions that further favor cyanobacterial dominance. Additionally, the presence of Microcystis-specific cyanophage sequences provided preliminary evidence of possible top-down virus-mediated control of cHAB populations. Overall, these data provide insight into the complex series of constraints associated with Microcystis blooms that dominate the western basin of Lake Erie during summer months, demonstrating that multiple environmental factors work to shape the microbial community.


Subject(s)
Biota , Cyanobacteria/growth & development , Fresh Water/microbiology , Bacteriophages/growth & development , Cyanobacteria/virology , Eutrophication , Gene Expression Profiling , Lakes/microbiology , Metagenomics , Molecular Sequence Data , Sequence Analysis, DNA , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...