Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 139: 105680, 2020 06.
Article in English | MEDLINE | ID: mdl-32272293

ABSTRACT

Wildfire is a major source of biomass burning aerosols, which greatly impact Earth climate. Tree species in North America (NA) boreal forests can support high-intensity crown fires, resulting in elevated injection height and longer lifetime (on the order of months) of the wildfire aerosols. Given the long lifetime, the properties of aged NA wildfire aerosols are required to understand and quantify their effects on radiation and climate. Here we present comprehensive characterization of climatically relevant properties, including optical properties and cloud condensation nuclei (CCN) activities of aged NA wildfire aerosols, emitted from the record-breaking Canadian wildfires in August 2017. Despite the extreme injection height of ~12 km, some of the wildfire plumes descended into the marine boundary layer in the eastern North Atlantic over a period of ~2 weeks, owing to the dry intrusions behind mid-latitude cyclones. The aged wildfire aerosols have high single scattering albedos at 529 nm (ω529; 0.92-0.95) while low absorption Ångström exponents (Åabs) at 464 nm/648 nm (0.7-0.9). In comparison, Åabs of fresh/slightly aged ones are typically 1.4-3.5. This low Åabs indicates a nearly complete loss of brown carbon, likely due to bleaching and/or evaporation, during the long-range transport. The nearly complete loss suggests that on global average, direct radiative forcing of BrC may be minor. Combining Mie calculations and the measured aerosol hygroscopicity, volatility and size distributions, we show that the high ω529 and low Åabs values are best explained by an external mixture of non-absorbing organic particles and absorbing particles of large BC cores (>~110 nm diameter) with thick non-absorbing coatings. The accelerated descent of the wildfire plume also led to strong increase of CCN concentration at the supersaturation levels representative of marine low clouds. The hygroscopicity parameter, κCCN, of the aged wildfire aerosols varies from 0.2 to 0.4, substantially lower than that of background marine boundary layer aerosols. However, the high fraction of particles with large diameter (i.e., within accumulation size ranges, ~100-250 nm) compensates for the low values of κ, and as a result, the aged NA wildfire aerosols contribute more efficiently to CCN population. These results provide direct evidence that the long-range transported NA wildfires can strongly influence CCN concentration in remote marine boundary layer, therefore the radiative properties of marine low clouds. Given the expected increases of NA wildfire intensity and frequency and regular occurrence of dry intrusion following mid-latitude cyclones, the influence of NA wildfire aerosols on CCN and clouds in remote marine environment need to be further examined.


Subject(s)
Wildfires , Aerosols , Biomass , Canada , North America , United States
2.
Environ Sci Technol ; 54(1): 92-101, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31840985

ABSTRACT

The rapid decrease in Arctic sea ice is motivating development and increasing oil and gas extraction activities. However, few observations of these local Arctic emissions exist, limiting the understanding of impacts on atmospheric composition and climate. To address this knowledge gap, the chemical composition of atmospheric aerosols was measured within the North Slope of Alaska oil fields during August and September 2016 using an aerosol time-of-flight mass spectrometer (ATOFMS) and a time-of-flight aerosol chemical speciation monitor (ToF-ACSM). Plumes from oil and gas extraction activities were characterized by soot internally mixed with sulfate (matching diesel soot) and organic carbon particles containing aminium sulfate salts. Sea spray aerosol at the coastal site was frequently internally mixed with sulfate and nitrate, from multiphase chemical processing from elevated NOx and SO2 within the oil field. Background (nonplume) air masses were characterized by aged combustion aerosol. No periods of "clean" (nonpolluted) Arctic air were observed. The composition of the nonrefractory aerosol measured with the ACSM was similar during plume and background periods and was consistent with the mass concentrations of nonrefractory particles measured by ATOFMS. Two ultrafine aerosol growth events were observed during oil field background periods and were correlated with fine mode amine-containing particles.


Subject(s)
Air Pollutants , Soot , Aerosols , Alaska , Amines , Environmental Monitoring , Oil and Gas Fields , Particle Size , Sulfates , Sulfuric Acid Esters
3.
Sci Adv ; 4(4): eaar2547, 2018 04.
Article in English | MEDLINE | ID: mdl-29651460

ABSTRACT

Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 106 to 1.6 × 106 cm-3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.

4.
Proc Natl Acad Sci U S A ; 113(22): 6125-30, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27185928

ABSTRACT

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.


Subject(s)
Air Pollutants/analysis , Butadienes/chemistry , Free Radicals/analysis , Hemiterpenes/chemistry , Nitric Oxide/chemistry , Pentanes/chemistry , Photochemistry , Rainforest , Acrolein/analogs & derivatives , Acrolein/analysis , Atmosphere , Butadienes/radiation effects , Butanones/analysis , Hemiterpenes/radiation effects , Humans , Oxidation-Reduction , Pentanes/radiation effects , Peroxides/chemistry
5.
Environ Sci Technol ; 46(3): 1692-9, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22243211

ABSTRACT

Carbon capture and sequestration (CCS) will act as a bridging technology necessary to facilitate a transition from fossil fuels to a sustainable energy based economy. The Department of Energy (DOE) target leak rate for sequestration reservoirs is 1% of total sequestered CO(2) over the lifetime of the reservoir. This is 0.001% per year for a 1000 year lifetime of a storage reservoir. Effective detection of CO(2) leaks at the surface may require incorporation of a tracer tag into the sequestered CO(2). We applied a simple Gaussian Plume model to predict dispersion of a direct leak into the atmosphere and used the results to examine the requirements for designing a perfluorocarbon (PFT) monitoring network and tracer tagging strategy. Careful consideration must be given to the climate implications of using these compounds. The quantity of PFTs needed for tagging sequestered CO(2) is too large to be practical for routine monitoring. Tagging at a level that will result in 1.5 times background at a sampler 1 km from a leak of 0.01% per year will require 625 kg per year of PFT. This is a leak rate 10 times greater than the 1000 year DOE requirement and will require 19 tons of injected PFT over the 30 year lifetime of a 1000 mega watt coal fired plant. The utility of PFTs or any other tracer will be lost if the background levels are allowed to rise indiscriminately. A better use of PFTs is as a tool in sequestration research. Instead, geological surveys of sequestration sites will be necessary to locate potential direct pathways and develop targeted monitoring strategies. A global agreement on the use of tracers for monitoring CCS projects should be developed.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , Environmental Monitoring/methods , Fluorocarbons/analysis , Models, Chemical , Fluorocarbons/chemistry , Indicators and Reagents/analysis , Time Factors
6.
Environ Sci Technol ; 41(20): 6909-13, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17993127

ABSTRACT

There are seven cyclic perfluoroalkane compounds, which can be detected in extremely low concentrations, that are used to track mass movement and transfer in a variety of research and practical applications. They are used in leak detection in underground storage and pipelines and in atmospheric transport and diffusion research on local, regional, and continental scales. They are likely to be a used globally for monitoring carbon sequestration in geological formations. The atmospheric background levels of these compounds must be accurately known, and trends in their concentrations determined for these compounds to be effective in monitoring CO2 reservoirs and because there are environmental concerns about their release. Results of measurements of perfluorocarbon background concentrations from two recent field programs are presented, and trends in these values examined using data collected over the last 25 years. The current atmospheric concentrations of these compounds are in the low parts per quadrillion levels, and their annual atmospheric growth rate is less than 1 part per quadrillion per year. The environmental effects of these compounds are examined and found to be negligible at current release rates.


Subject(s)
Air Pollutants/analysis , Atmosphere , Fluorocarbons/analysis , Environmental Monitoring , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...