Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Article in English | MEDLINE | ID: mdl-38878138

ABSTRACT

In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.

2.
J Head Trauma Rehabil ; 39(3): E122-E131, 2024.
Article in English | MEDLINE | ID: mdl-38709832

ABSTRACT

OBJECTIVE: To understand how methylphenidate (MPH) is used in youth with traumatic brain injury (TBI) during inpatient pediatric rehabilitation. SETTING: Inpatient pediatric rehabilitation. PARTICIPANTS: In total, 234 children with TBI; 62 of whom received MPH and 172 who did not. Patients were on average 11.6 years of age (range, 2 months to 21 years); 88 of 234 were female; the most common mechanism of injury was motor vehicle collision (49%); median (IQR) acute hospital length of stay (LOS) and inpatient rehabilitation LOS were 16 (10-29) and 23 (14-39), respectively; 51 of 234 were in a disorder of consciousness cognitive state at time of inpatient rehabilitation admission. DESIGN: Multicenter, retrospective medical record review. MAIN MEASURES: Patient demographic data, time to inpatient pediatric rehabilitation admission (TTA), cognitive state, MPH dosing (mg/kg/day). RESULTS: Patients who received MPH were older (P = .011); TTA was significantly longer in patients who received MPH than those who did not (P =.002). The lowest recorded dose range by weight was 0.05 to 0.89 mg/kg/d, representing an 18-fold difference; the weight-based range for the maximum dose was 0.11 to 0.97 mg/kg/d, a 9-fold difference. Patients in lower cognitive states at admission (P = .001) and at discharge (P = .030) were more likely to receive MPH. Five patients had side effects known to be associated with MPH; no serious adverse events were reported. CONCLUSION: This multicenter study indicates that there is variable use of MPH during acute inpatient rehabilitation for children with TBI. Children who receive MPH tend to be older with lower cognitive states. Dosing practices are likely consistent with underdosing. Clinical indications for MPH use during inpatient pediatric rehabilitation should be better defined. The use of MPH, as well as its combination with other medications and treatments, during inpatient rehabilitation needs to be further explored.


Subject(s)
Brain Injuries, Traumatic , Central Nervous System Stimulants , Methylphenidate , Practice Patterns, Physicians' , Humans , Methylphenidate/therapeutic use , Methylphenidate/administration & dosage , Child , Female , Brain Injuries, Traumatic/rehabilitation , Male , Adolescent , Child, Preschool , Retrospective Studies , Central Nervous System Stimulants/therapeutic use , Central Nervous System Stimulants/administration & dosage , Infant , Practice Patterns, Physicians'/statistics & numerical data , Young Adult , Inpatients , Length of Stay , Rehabilitation Centers
3.
Article in English | MEDLINE | ID: mdl-38452881

ABSTRACT

OBJECTIVE: To assess feasibility of routine delirium screening using the Cornell Assessment of Pediatric Delirium (CAPD) in children admitted for rehabilitation with acquired brain injury (ABI), report on the prevalence of positive delirium screens in this population, and explore longitudinal trends in CAPD scores and their association with rehabilitation outcomes. DESIGN: Retrospective study. SETTING: Pediatric inpatient rehabilitation unit. PARTICIPANTS: 144 children (median 10.8 years) with ABI (N=144). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Percent compliance with twice daily delirium screening; prevalence of positive delirium screens; trajectories in CAPD scores and their relation with FIM for Children (WeeFIM) scores. RESULTS: Screening was feasible (mean 75% compliance for each of 144 children). Of 16,136 delirium screens, 29% were positive. 62% of children had ≥1 positive screen. Four primary patterns of CAPD trajectories were identified: Static Encephalopathy (10%), Episodic Delirium (10%), Improving (32%), and No Delirium (48%). Validity of these trajectories was demonstrated through association with WeeFIM and CALS outcomes. Younger age at admission was associated with positive delirium screens, and rehabilitation length of stay was significantly longer for the Improving group. CONCLUSIONS: Delirium occurs frequently in children with ABI during inpatient rehabilitation. Routine delirium screening provides clinically relevant information including the potential to facilitate early detection and intervention for medical complications. Longitudinal ratings of delirium symptoms may also have a role in developing a standardized definition for Post Traumatic Confusional State (PTCS) stage of recovery in children.

4.
J Surg Educ ; 81(1): 134-144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926660

ABSTRACT

OBJECTIVE: Emergency department thoracotomy (EDT) is an uncommon but potentially lifesaving procedure that warrants familiarity with anatomy, instruments, and indications necessary for completion. To address this need, we developed a low-cost EDT trainer. The primary objective of this study was to compare the effectiveness of a low-cost EDT trainer to teach emergency department thoracotomy with a discussion-based teaching session. Secondary objective was to study the face validity of the low-cost EDT trainer. DESIGN: A prospective 2-phase randomized control study was conducted. Participants were randomly divided into two groups. In phase one, baseline medical knowledge for both groups was assessed using a multiple-choice question pretest. In Group 1, each participant was taught EDT using a one-on-one discussion with a trauma surgeon, whereas Group 2 used the EDT trainer and debriefing for training. In phase 2 (1 month later), all participants completed a knowledge retention test and performed a videoed EDT using our EDT trainer, the video recordings were later reviewed by content experts blinded to the study participants using a checklist with a maximum score of 22. The participants also completed a reaction survey at the end of phase 2 of the study. SETTING: OhioHealth Riverside Methodist Hospital, an urban tertiary care academic hospital in Columbus, Ohio. PARTICIPANTS: Nine senior surgery residents from training years 3 to 5. RESULTS: The mean score for the performance of the procedure for the simulation-based (Group 2) was significantly higher than that of the discussion-based (Group 1) (Rater 1: 21.2 ± 0.8 vs. 19.0 ± 2.0, p = 0.05, Rater 2: 20.4 ± 1.5 vs. 18.3±1.0, p = 0.04). Group 2 also was quicker than Group 1 in deciding to start the procedure by approximately 56 seconds. When comparing the mean pretest knowledge score to the mean knowledge retention score 30 days after training, the discussion-based group improved from 58.33% to 81.25% (p = 0.01); the simulation-trained group's scores remained at 68.33%. All the participants agreed or strongly agreed that the simulator provided a realistic opportunity to perform EDT and improved their confidence. CONCLUSIONS: The results of this pilot study support our hypothesis that using a low-cost EDT trainer effectively improves general surgery residents' confidence and procedural skills scores in a simulated environment. Further training with low-cost simulators may provide surgical residents with deliberate practice opportunities and improve performance when learning low-frequency procedures.


Subject(s)
General Surgery , Internship and Residency , Humans , Thoracotomy/education , Pilot Projects , Prospective Studies , Emergency Service, Hospital , Clinical Competence , General Surgery/education
5.
Int J Cardiol ; 395: 131594, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37979795

ABSTRACT

BACKGROUND: Since the COVID-19 pandemic, post-COVID syndrome (persistent symptoms/complications lasting >12 weeks) continues to pose medical and economic challenges. In military personnel, where optimal fitness is crucial, prolonged limitations affecting their ability to perform duties has occupational and psychological implications, impacting deployability and retention. Research investigating post-COVID syndrome exercise capacity and cardiopulmonary effects in military personnel is limited. METHODS: UK military personnel were recruited from the Defence Medical Services COVID-19 Recovery Service. Participants were separated into healthy controls without prior SARS-CoV-2 infection (group one), and participants with prolonged symptoms (>12 weeks) after mild-moderate (community-treated) and severe (hospitalised) COVID-19 illness (group 2 and 3, respectively). Participants underwent cardiac magnetic resonance imaging (CMR) and spectroscopy, echocardiography, pulmonary function testing and cardiopulmonary exercise testing (CPET). RESULTS: 113 participants were recruited. When compared in ordered groups (one to three), CPET showed stepwise decreases in peak work, work at VT1 and VO2 max (all p < 0.01). There were stepwise decreases in FVC (p = 0.002), FEV1 (p = 0.005), TLC (p = 0.002), VA (p < 0.001), and DLCO (p < 0.002), and a stepwise increase in A-a gradient (p < 0.001). CMR showed stepwise decreases in LV/RV volumes, stroke volumes and LV mass (LVEDVi/RVEDVi p < 0.001; LVSV p = 0.003; RVSV p = 0.001; LV mass index p = 0.049). CONCLUSION: In an active military population, post-COVID syndrome is linked to subclinical changes in maximal exercise capacity. Alongside disease specific changes, many of these findings share the phenotype of deconditioning following prolonged illness or bedrest. Partitioning of the relative contribution of pathological changes from COVID-19 and deconditioning is challenging in post-COVID syndrome recovery.


Subject(s)
COVID-19 , Military Personnel , Humans , Exercise Tolerance , Pandemics , SARS-CoV-2 , Lung , Exercise Test
6.
Eur Heart J Imaging Methods Pract ; 1(2): qyad035, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37969333

ABSTRACT

Aims: Left ventricular (LV) pressure-volume (PV) loops provide gold-standard physiological information but require invasive measurements of ventricular intracavity pressure, limiting clinical and research applications. A non-invasive method for the computation of PV loops from magnetic resonance imaging and brachial cuff blood pressure has recently been proposed. Here we evaluated the fidelity of the non-invasive PV algorithm against invasive LV pressures in humans. Methods and results: Four heart failure patients with EF < 35% and LV dyssynchrony underwent cardiovascular magnetic resonance (CMR) imaging and subsequent LV catheterization with sequential administration of two different intravenous metabolic substrate infusions (insulin/dextrose and lipid emulsion), producing eight datasets at different haemodynamic states. Pressure-volume loops were computed from CMR volumes combined with (i) a time-varying elastance function scaled to brachial blood pressure and temporally stretched to match volume data, or (ii) invasive pressures averaged from 19 to 30 sampled beats. Method comparison was conducted using linear regression and Bland-Altman analysis. Non-invasively derived PV loop parameters demonstrated high correlation and low bias when compared to invasive data for stroke work (R2 = 0.96, P < 0.0001, bias 4.6%), potential energy (R2 = 0.83, P = 0.001, bias 1.5%), end-systolic pressure-volume relationship (R2 = 0.89, P = 0.0004, bias 5.8%), ventricular efficiency (R2 = 0.98, P < 0.0001, bias 0.8%), arterial elastance (R2 = 0.88, P = 0.0006, bias -8.0%), mean external power (R2 = 0.92, P = 0.0002, bias 4.4%), and energy per ejected volume (R2 = 0.89, P = 0.0001, bias 3.7%). Variations in estimated end-diastolic pressure did not significantly affect results (P > 0.05 for all). Intraobserver analysis after one year demonstrated 0.9-3.4% bias for LV volumetry and 0.2-5.4% for PV loop-derived parameters. Conclusion: Pressure-volume loops can be precisely and accurately computed from CMR imaging and brachial cuff blood pressure in humans.

7.
J Am Soc Mass Spectrom ; 34(8): 1653-1662, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37410028

ABSTRACT

This work demonstrates high-throughput screening of personal care products to provide an overview of potential exposure. Sixty-seven products from five categories (body/fragrance oil, cleaning product, hair care, hand/body wash, lotion, sunscreen) were rapidly extracted and then analyzed using suspect screening by two-dimensional gas chromatography (GCxGC) high-resolution mass spectrometry (GCxGC-HRT). Initial peak finding and integration were performed using commercial software, followed by batch processing using the machine learning program Highlight. Highlight automatically performs background subtraction, chromatographic alignment, signal quality review, multidilution aggregation, peak grouping, and iterative integration. This data set resulted in 2,195 compound groups and 43,713 individual detections. Compounds of concern (101) were downselected and classified as mild irritants (29%), environmental toxicants/severe irritants (51%) and endocrine disrupting chemicals/carcinogens (20%). High risk compounds such as phthalates, parabens, and avobenzone were detected in 46 out of the 67 products (69%), and only 5 out of the 67 products (7%) listed these compounds on their ingredient labels. The Highlight results for the compounds of concern were compared to commercial software results (ChromaTOF) and 5.3% of the individual detections were discerned only by Highlight, demonstrating the strength of the iterative algorithm to effectively discover low-level signatures. Highlight provides a significant labor advantage, requiring only 2.6% of the time estimated for a largely manual workflow using commercial software. In order to address significant time needed for postprocessing assignment of identification confidence, a new machine-learning-based algorithm was developed to assess the quality of assigned library matches, and a balanced accuracy of 79% was achieved.


Subject(s)
Cosmetics , Irritants , Humans , Software , Algorithms , Gas Chromatography-Mass Spectrometry/methods
8.
Circulation ; 148(2): 109-123, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37199155

ABSTRACT

BACKGROUND: The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS: To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS: At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS: Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Stroke Volume , Energy Metabolism , Ventricular Function, Left , Myocardium/metabolism , Heart Failure/pathology , Adenosine Triphosphate/metabolism , Ventricular Dysfunction, Left/pathology , Fatty Acids/metabolism , Glucose/metabolism , Oxygen/metabolism
9.
Child Neuropsychol ; 29(2): 299-320, 2023 02.
Article in English | MEDLINE | ID: mdl-35726723

ABSTRACT

Neuropsychologists working in a pediatric neurorehabilitation setting provide care for children and adolescents with acquired brain injuries (ABI) and play a vital role on the interdisciplinary treatment team. This role draws on influences from the field of clinical neuropsychology and its pediatric subspecialty, as well as rehabilitation psychology. This combination of specialties is uniquely suited for working with ABI across the continuum of recovery. ABI recovery often involves a changing picture that spans across stages of recovery (e.g., disorders of consciousness, confusional state, acute cognitive impairment), where each stage presents with distinctive characteristics that warrant a specific evidence-based approach. Assessment and intervention are used reciprocally to inform diagnostics, treatment, and academic planning, and to support patient and family adjustment. Neuropsychologists work with the interdisciplinary teams to collect and integrate data related to brain injury recovery and use this data for treatment planning and clinical decision making. These approaches must often be adapted and adjusted in real time as patients recover, demanding a dynamic expertise that is currently not supported through formal training curriculum or practice guidelines. This paper outlines the roles and responsibilities of pediatric rehabilitation neuropsychologists across the stages of ABI recovery with the goal of increasing awareness in order to continue to develop and formalize this role.


Subject(s)
Brain Injuries , Neuropsychology , Adolescent , Humans , Child , Brain Injuries/complications , Motivation
10.
J Card Fail ; 29(5): 834-840, 2023 05.
Article in English | MEDLINE | ID: mdl-36521726

ABSTRACT

BACKGROUND: Heart transplantation (HTx) after donation after circulatory death (DCD) is an expanding practice but is associated with increased warm ischemic time. The impact of DCD HTx on cardiac mechanics and myocardial fibrosis has not been reported. We aimed to compare cardiac mechanics and myocardial fibrosis using cardiovascular magnetic resonance (CMR) imaging in donation after brain death (DBD) and DCD HTx recipients and healthy controls. METHODS AND RESULTS: Consecutive HTx recipients between March 2015 and March 2021 who underwent routine surveillance CMR imaging were included. Cardiac mechanics were assessed using CMR feature tracking to compute global longitudinal strain, global circumferential strain, and right ventricular free-wall longitudinal myocardial strain. Fibrosis was assessed using late gadolinium enhancement imaging and estimation of extracellular volume. There were 82 (DBD n = 42, DCD n = 40) HTx recipients (aged 53 years, interquartile range 41-59 years, 24% female) who underwent CMR imaging at median of 9 months (interquartile range 6-14 months) after transplantation. HTx recipients had increased extracellular volume (29.7 ± 3.6%) compared with normal ranges (25.9%, interquartile range 25.4-26.5). Myocardial strain was impaired after transplantation compared with controls (global longitudinal strain -12.6 ± 3.1% vs -17.2 ± 1.8%, P < .0001; global circumferential strain -16.9 ± 3.1% vs -19.2 ± 2.0%, P = .002; right ventricular free-wall longitudinal strain -15.7 ± 4.5% vs -21.6 ± 4.7%, P < .0001). There were no differences in fibrosis burden (extracellular volume 30.6 ± 4.4% vs 29.2 ± 3.2%; P = .39) or cardiac mechanics (global longitudinal strain -13.1 ± 3.0% vs -12.1 ± 3.1%, P = .14; global circumferential strain -17.3 ± 2.9% vs -16.6 ± 3.1%, P = .27; right ventricular free-wall longitudinal strain -15.9 ± 4.9% vs -15.5 ± 4.1%, P = .71) between DCD and DBD HTx. CONCLUSIONS: HTx recipients have impaired cardiac mechanics compared with controls, with increased myocardial fibrosis. There were no differences in early CMR imaging characteristics between DBD and DCD heart transplants, providing further evidence that DCD and DBD HTx outcomes are comparable.


Subject(s)
Cardiomyopathies , Heart Failure , Heart Transplantation , Humans , Female , Male , Contrast Media , Gadolinium , Heart Failure/diagnostic imaging , Heart Failure/surgery , Heart Transplantation/adverse effects , Fibrosis , Retrospective Studies , Tissue Donors
11.
Neurol Clin Pract ; 12(3): 248-257, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35733619

ABSTRACT

Background and Objectives: Following severe brain injury, up to 16% of adults showing no clinical signs of cognitive function nonetheless have preserved cognitive capacities detectable via neuroimaging and neurophysiology; this has been designated cognitive-motor dissociation (CMD). Pediatric medicine lacks both practice guidelines for identifying covert cognition and epidemiologic data regarding CMD prevalence. Methods: We applied a diverse battery of neuroimaging and neurophysiologic tests to evaluate 2 adolescents (aged 15 and 18 years) who had shown no clinical evidence of preserved cognitive function following brain injury at age 9 and 13 years, respectively. Clinical evaluations were consistent with minimally conscious state (minus) and vegetative state, respectively. Results: Both participants' EEG, and 1 participant's fMRI, provided evidence that they could understand commands and make consistent voluntary decisions to follow them. Both participants' EEG demonstrated larger-than-expected responses to auditory stimuli and intact semantic processing of words in context. Discussion: These converging lines of evidence lead us to conclude that both participants had preserved cognitive function dissociated from their motor output. Throughout the 5+ years since injury, communication attempts and therapy had remained uninformed by such objective evidence of their cognitive abilities. Proper diagnosis of CMD is an ethical imperative. Children with covert cognition reflect a vulnerable and isolated population; the methods outlined here provide a first step in identifying such persons to advance efforts to alleviate their condition.

12.
J Head Trauma Rehabil ; 37(4): 240-248, 2022.
Article in English | MEDLINE | ID: mdl-34320554

ABSTRACT

OBJECTIVES: To describe dosing practices for amantadine hydrochloride and related adverse effects among children and young adults with traumatic brain injury (TBI) admitted to pediatric inpatient rehabilitation units. SETTING: Eight pediatric acute inpatient rehabilitation units located throughout the United States comprising the Pediatric Brain Injury Consortium. PARTICIPANTS: Two-hundred thirty-four children and young adults aged 2 months to 21 years with TBI. DESIGN: Retrospective data revie. MAIN OUTCOME MEASURES: Demographic variables associated with the use of amantadine, amantadine dose, and reported adverse effects. RESULTS: Forty-nine patients (21%) aged 0.9 to 20 years received amantadine during inpatient rehabilitation. Forty-five percent of patients admitted to inpatient rehabilitation with a disorder of consciousness (DoC) were treated with amantadine, while 14% of children admitted with higher levels of functioning received amantadine. Children with DoC who were not treated with amantadine were younger than those with DoC who received amantadine (median 3.0 vs 11.6 years, P = .008). Recorded doses of amantadine ranged from 0.7 to 13.5 mg/kg/d; the highest total daily dose was 400 mg/d. Adverse effects were reported in 8 patients (16%); nausea/abdominal discomfort and agitation were most common, each reported in 3 patients. The highest reported dose without an adverse effect was 10.1 mg/kg/d. CONCLUSION: During pediatric inpatient rehabilitation, amantadine was prescribed to children across a range of ages and injury severity and was most commonly prescribed to older children with DoC. Dosing varied widely, with weight-based dosing for younger/smaller children at both lower and higher doses than what had been previously reported. Prospective studies are needed to characterize the safety and tolerability of higher amantadine doses and optimize amantadine dosing parameters for children with TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adolescent , Amantadine/therapeutic use , Brain Injuries/rehabilitation , Brain Injuries, Traumatic/complications , Child , Humans , Inpatients , Retrospective Studies , United States , Young Adult
13.
Circulation ; 144(21): 1664-1678, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34743560

ABSTRACT

BACKGROUND: Transient pulmonary congestion during exercise is emerging as an important determinant of reduced exercise capacity in heart failure with preserved ejection fraction (HFpEF). We sought to determine whether an abnormal cardiac energetic state underpins this process. METHODS: We recruited patients across the spectrum of diastolic dysfunction and HFpEF (controls, n=11; type 2 diabetes, n=9; HFpEF, n=14; and severe diastolic dysfunction attributable to cardiac amyloidosis, n=9). Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to ATP ratio. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging and echocardiography and lung water using magnetic resonance proton density mapping. Studies were performed at rest and during submaximal exercise using a magnetic resonance imaging ergometer. RESULTS: Paralleling the stepwise decline in diastolic function across the groups (E/e' ratio; P<0.001) was an increase in NT-proBNP (N-terminal pro-brain natriuretic peptide; P<0.001) and a reduction in phosphocreatine/ATP ratio (control, 2.15 [2.09, 2.29]; type 2 diabetes, 1.71 [1.61, 1.91]; HFpEF, 1.66 [1.44, 1.89]; cardiac amyloidosis, 1.30 [1.16, 1.53]; P<0.001). During 20-W exercise, lower left ventricular diastolic filling rates (r=0.58; P<0.001), lower left ventricular diastolic reserve (r=0.55; P<0.001), left atrial dilatation (r=-0.52; P<0.001), lower right ventricular contractile reserve (right ventricular ejection fraction change, r=0.57; P<0.001), and right atrial dilation (r=-0.71; P<0.001) were all linked to lower phosphocreatine/ATP ratio. Along with these changes, pulmonary proton density mapping revealed transient pulmonary congestion in patients with HFpEF (+4.4% [0.5, 6.4]; P=0.002) and cardiac amyloidosis (+6.4% [3.3, 10.0]; P=0.004), which was not seen in healthy controls (-0.1% [-1.9, 2.1]; P=0.89) or type 2 diabetes without HFpEF (+0.8% [-1.7, 1.9]; P=0.82). The development of exercise-induced pulmonary congestion was associated with lower phosphocreatine/ATP ratio (r=-0.43; P=0.004). CONCLUSIONS: A gradient of myocardial energetic deficit exists across the spectrum of HFpEF. Even at low workload, this energetic deficit is related to markedly abnormal exercise responses in all 4 cardiac chambers, which is associated with detectable pulmonary congestion. The findings support an energetic basis for transient pulmonary congestion in HFpEF.


Subject(s)
Exercise/adverse effects , Heart Failure, Diastolic/diagnosis , Heart Failure, Diastolic/etiology , Hyperemia/complications , Hyperemia/physiopathology , Pulmonary Circulation , Aged , Biomarkers , Disease Susceptibility , Echocardiography , Exercise Test , Female , Heart Function Tests , Humans , Hyperemia/diagnosis , Magnetic Resonance Imaging , Male , Middle Aged , Pulmonary Edema/diagnosis , Severity of Illness Index , Stroke Volume , Ventricular Function, Left
14.
J Head Trauma Rehabil ; 36(4): 253-263, 2021.
Article in English | MEDLINE | ID: mdl-33656473

ABSTRACT

OBJECTIVES: To characterize the demographics, clinical course, and predictors of cognitive recovery among children and young adults receiving inpatient rehabilitation following pediatric traumatic brain injury (TBI). DESIGN: Retrospective observational, multicenter study. SETTING: Eight acute pediatric inpatient rehabilitation facilities in the United States with specialized programs for treating patients with TBI. PARTICIPANTS: Children and young adults (0-21 years) with TBI (n = 234) receiving inpatient rehabilitation. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Admission and discharge status assessed by the WeeFIM Cognitive Developmental Functional Quotient (DFQ) and Cognitive and Linguistic Scale (CALS). RESULTS: Patients admitted to pediatric inpatient rehabilitation are diverse in cognitive functioning. While the majority of patients make improvements, cognitive recovery is constrained for those admitted with the most severe cognitive impairments. Age, time since injury to rehabilitation admission, and admission WeeFIM Cognitive DFQ are significant predictors of cognitive functioning at discharge from inpatient rehabilitation. CONCLUSIONS: This work establishes a multicenter Pediatric Brain Injury Consortium and characterized the demographics and clinical course of cognitive recovery during inpatient rehabilitation of pediatric patients with TBI to aid in prospective study design.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Brain Injuries, Traumatic/diagnosis , Child , Cognition , Humans , Inpatients , Length of Stay , Prospective Studies , Recovery of Function , Rehabilitation Centers , Retrospective Studies , United States , Young Adult
15.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Article in English | MEDLINE | ID: mdl-33538063

ABSTRACT

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Subject(s)
Adenosine Triphosphate , Myocardium , Animals , Creatine Kinase , Magnetic Resonance Spectroscopy , Phosphocreatine , Rats
16.
J Neurotrauma ; 38(14): 1961-1968, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33504256

ABSTRACT

Traumatic brain injury (TBI) is a major cause of morbidity and mortality in children; survivors experience long-term cognitive and motor deficits. To date, studies predicting outcome following pediatric TBI have primarily focused on acute behavioral responses and proxy measures of injury severity; unsurprisingly, these measures explain very little of the variance following heterogenous injury. In adults, certain acute imaging biomarkers help predict cognitive and motor recovery following moderate to severe TBI. This multi-center, retrospective study, characterizes the day-of-injury computed tomographic (CT) reports of pediatric, adolescent, and young adult patients (2 months to 21 years old) who received inpatient rehabilitation services for TBI (n = 247). The study also determines the prognostic utility of CT findings for cognitive and motor outcomes assessed by the Pediatric Functional Independence Measure, converted to age-appropriate developmental functional quotient (DFQ), at discharge from rehabilitation. Subdural hematomas (66%), contusions (63%), and subarachnoid hemorrhages (59%) were the most common lesions; the majority of subjects had less severe Rotterdam CT scores (88%, ≤ 3). After controlling for age, gender, mechanism of injury, length of acute hospital stay, and admission DFQ in multivariate regression analyses, the highest Rotterdam score (ß = -25.2, p < 0.01) and complete cisternal effacement (ß = -19.4, p < 0.05) were associated with lower motor DFQ, and intraventricular hemorrhage was associated with lower motor (ß = -3.7, p < 0.05) and cognitive DFQ (ß = -4.9, p < 0.05). These results suggest that direct detection of intracranial injury provides valuable information to aid in prediction of recovery after pediatric TBI, and needs to be accounted for in future studies of prognosis and intervention.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/psychology , Cognition Disorders/rehabilitation , Motor Disorders/rehabilitation , Tomography, X-Ray Computed , Adolescent , Brain Injuries, Traumatic/rehabilitation , Child , Child, Preschool , Cognition Disorders/diagnostic imaging , Cognition Disorders/etiology , Female , Hospitalization , Humans , Infant , Male , Motor Disorders/diagnostic imaging , Motor Disorders/etiology , Predictive Value of Tests , Recovery of Function , Retrospective Studies , Young Adult
17.
Front Physiol ; 12: 790525, 2021.
Article in English | MEDLINE | ID: mdl-35035360

ABSTRACT

Objective: Although intravenous nitrates are commonly used in clinical medicine, they have been shown to increase myocardial oxygen consumption and inhibit complex IV of the electron transport chain. As such we sought to measure whether myocardial energetics were impaired during glyceryl trinitrate (GTN) infusion. Methods: 10 healthy volunteers underwent cardiac magnetic resonance imaging to assess cardiac function and 31phosphorus magnetic resonance spectroscopy to measure Phosphocreatine/ATP (PCr/ATP) ratio and creatine kinase forward rate constant (CK kf ) before and during an intravenous infusion of GTN. Results: During GTN infusion, mean arterial pressure (78 ± 7 vs. 65 ± 6 mmHg, p < 0.001), left ventricular (LV) stroke work (7,708 ± 2,782 vs. 6,071 ± 2,660 ml mmHg, p < 0.001), and rate pressure product (7,214 ± 1,051 vs. 6,929 ± 976 mmHg bpm, p = 0.06) all fell. LV ejection fraction increased (61 ± 3 vs. 66 ± 4%, p < 0.001), with cardiac output remaining constant (6.2 ± 1.5 vs. 6.5 ± 1.4 l/min, p = 0.37). Myocardial PCr/ATP fell during GTN infusion (2.17 ± 0.2 vs. 1.99 ± 0.22, p = 0.03) with an increase in both CK kf (0.16 ± 0.07 vs. 0.25 ± 0.1 s-1, p = 0.006) and CK flux (1.8 ± 0.8 vs. 2.6 ± 1.1 µmol/g/s, p = 0.03). Conclusion: During GTN infusion, despite reduced LV stroke work and maintained cardiac output, there was a 44% increase in myocardial ATP delivery through CK. As PCr/ATP fell, this increase in ATP demand coincided with GTN-induced impairment of mitochondrial oxidative phosphorylation. Overall, this suggests that while GTN reduces cardiac work, it does so at the expense of increasing ATP demand beyond the capacity to increase ATP production.

18.
Sci Rep ; 10(1): 14356, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873833

ABSTRACT

Blood flow in the vasculature can be characterised by dimensionless numbers commonly used to define the level of instabilities in the flow, for example the Reynolds number, Re. Haemodynamics play a key role in cardiovascular disease (CVD) progression. Genetic studies have identified mechanosensitive genes with causal roles in CVD. Given that CVD is highly heritable and abnormal blood flow may increase risk, we investigated the heritability of fluid metrics in the ascending aorta calculated using patient-specific data from cardiac magnetic resonance (CMR) imaging. 341 participants from 108 British Caucasian families were phenotyped by CMR and genotyped for 557,124 SNPs. Flow metrics were derived from the CMR images to provide some local information about blood flow in the ascending aorta, based on maximum values at systole at a single location, denoted max, and a 'peak mean' value averaged over the area of the cross section, denoted pm. Heritability was estimated using pedigree-based (QTDT) and SNP-based (GCTA-GREML) methods. Estimates of Reynolds number based on spatially averaged local flow during systole showed substantial heritability ([Formula: see text], [Formula: see text]), while the estimated heritability for Reynolds number calculated using the absolute local maximum velocity was not statistically significant (12-13%; [Formula: see text]). Heritability estimates of the geometric quantities alone; e.g. aortic diameter ([Formula: see text], [Formula: see text]), were also substantially heritable, as described previously. These findings indicate the potential for the discovery of genetic factors influencing haemodynamic traits in large-scale genotyped and phenotyped cohorts where local spatial averaging is used, rather than instantaneous values. Future Mendelian randomisation studies of aortic haemodynamic estimates, which are swift to derive in a clinical setting, will allow for the investigation of causality of abnormal blood flow in CVD.


Subject(s)
Aorta/diagnostic imaging , Aorta/physiopathology , Cardiovascular Abnormalities/genetics , Genetic Predisposition to Disease/genetics , Hemodynamics/genetics , Pedigree , Polymorphism, Single Nucleotide , Adult , Aged , Blood Flow Velocity , Cohort Studies , Female , Genotyping Techniques , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Phenotype , Young Adult
19.
FASEB J ; 34(11): 14878-14891, 2020 11.
Article in English | MEDLINE | ID: mdl-32954525

ABSTRACT

Nicotinic acid receptor agonists have previously been shown to cause acute reductions in cardiac contractility. We sought to uncover the changes in cardiac metabolism underlying these alterations in function. In nine humans, we recorded cardiac energetics and function before and after a single oral dose of nicotinic acid using cardiac MRI to demonstrate contractile function and Phosphorus-31 (31 P) magnetic resonance spectroscopy to demonstrate myocardial energetics. Nicotinic Acid 400 mg lowered ejection fraction by 4% (64 ± 8% to 60 ± 7%, P = .03), and was accompanied by a fall in phosphocreatine/ATP ratio by 0.4 (2.2 ± 0.4 to 1.8 ± 0.1, P = .04). In four groups of eight Wistar rats, we used pyruvate dehydrogenase (PDH) flux studies to demonstrate changes in carbohydrate metabolism induced by the nicotinic acid receptor agonist, Acipimox, using hyperpolarized Carbon-13 (13 C) magnetic resonance spectroscopy. In rats which had been starved overnight, Acipimox caused a fall in ejection fraction by 7.8% (67.5 ± 8.9 to 60 ± 3.1, P = .03) and a nearly threefold rise in flux through PDH (from 0.182 ± 0.114 to 0.486 ± 0.139, P = .002), though this rise did not match pyruvate dehydrogenase flux observed in rats fed carbohydrate rich chow (0.726 ± 0.201). In fed rats, Acipimox decreased pyruvate dehydrogenase flux (to 0.512 ± 0.13, P = .04). Concentration of plasma insulin fell by two-thirds in fed rats administered Acipimox (from 1695 ± 891 ng/L to 550 ± 222 ng/L, P = .005) in spite of glucose concentrations remaining the same. In conclusion, we demonstrate that nicotinic acid receptor agonists impair cardiac contractility associated with a decline in cardiac energetics and show that the mechanism is likely a combination of reduced fatty acid availability and a failure to upregulate carbohydrate metabolism, essentially starving the heart of fuel.


Subject(s)
Energy Metabolism , Heart/drug effects , Hypolipidemic Agents/pharmacology , Myocardial Contraction , Niacin/analogs & derivatives , Pyrazines/pharmacology , Receptors, G-Protein-Coupled/agonists , Adenosine Triphosphate/blood , Adult , Animals , Carbohydrate Metabolism , Humans , Hypolipidemic Agents/administration & dosage , Insulin/blood , Male , Phosphocreatine/blood , Pyrazines/administration & dosage , Pyruvate Dehydrogenase Complex/metabolism , Rats , Rats, Wistar
20.
Cardiovasc Diagn Ther ; 10(3): 583-597, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32695639

ABSTRACT

The heart has a massive adenosine triphosphate (ATP) requirement, produced from the oxidation of metabolic substrates such as fat and glucose. Magnetic resonance spectroscopy offers a unique opportunity to probe this biochemistry: 31Phosphorus spectroscopy can demonstrate the production of ATP and quantify levels of the transport molecule phosphocreatine while 13Carbon spectroscopy can demonstrate the metabolic fates of glucose in real time. These techniques allow the metabolic deficits in heart failure to be interrogated and can be a potential future clinical tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...